The finite element method on adapted meshes for the two-dimensional convection diffusion problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 309-320

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed elliptic boundary value problem which models a special channel flow. Basing on the decomposition of the exact solution we obtain a priori bounds for derivatives of the exact solution. For the numerical solution, we used linear finite elements on an adapted meshes, further we discuss the additive extraction method. We obtain uniform estimates for the approximate solution in some energetic norm.
@article{SJVM_1999_2_4_a1,
     author = {B. M. Bagaev and H.-G. Roos},
     title = {The finite element method on adapted meshes for the two-dimensional convection diffusion problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {309--320},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a1/}
}
TY  - JOUR
AU  - B. M. Bagaev
AU  - H.-G. Roos
TI  - The finite element method on adapted meshes for the two-dimensional convection diffusion problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 309
EP  - 320
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a1/
LA  - en
ID  - SJVM_1999_2_4_a1
ER  - 
%0 Journal Article
%A B. M. Bagaev
%A H.-G. Roos
%T The finite element method on adapted meshes for the two-dimensional convection diffusion problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 309-320
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a1/
%G en
%F SJVM_1999_2_4_a1
B. M. Bagaev; H.-G. Roos. The finite element method on adapted meshes for the two-dimensional convection diffusion problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 309-320. http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a1/