On the properties of an orthonormalized singular polynomials set
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 171-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper introduces a concept of singular polynomials, and their orthonormalized set is constructed. The recurrence formula for three neighbouring orthonormalized singular polynomials is given and an analogue of the Rodrigues formula is found. It is established that the derivatives of polynomials from the built set have a property, close to the property of orthogonality. A differential equation and a family of relations for the derivatives of orthonormalized singular polynomials have been obtained. The results are applicable to the construction and investigation of the finite element method for mathematical physics problems with a strong singularity of solution.
@article{SJVM_1999_2_2_a5,
     author = {V. A. Rukavishnikov and E. V. Kashuba},
     title = {On the properties of an orthonormalized singular polynomials set},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a5/}
}
TY  - JOUR
AU  - V. A. Rukavishnikov
AU  - E. V. Kashuba
TI  - On the properties of an orthonormalized singular polynomials set
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 171
EP  - 183
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a5/
LA  - en
ID  - SJVM_1999_2_2_a5
ER  - 
%0 Journal Article
%A V. A. Rukavishnikov
%A E. V. Kashuba
%T On the properties of an orthonormalized singular polynomials set
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 171-183
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a5/
%G en
%F SJVM_1999_2_2_a5
V. A. Rukavishnikov; E. V. Kashuba. On the properties of an orthonormalized singular polynomials set. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a5/

[1] Rukavishnikov V. A., “On differential properties of the $R_\nu$-generalized solution of the Dirichlet problem”, Dokl. Acad. of Sci. USSR, 6 (1989), 1318–1320 | MR

[2] Suetin P. K., The classical orthogonal polynomials, Nauka, Moscow, 1979 (In Russian) | MR | Zbl