Behavior of the misfit functional for a~one-dimensional hyperbolic inverse problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 137-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the behavior of the misfit functional for a one-dimensional hyperbolic inverse problem when an unknown coefficient stands by a lowest term of a differential equation. Assuming an existence of an inverse problem solution we prove a uniqueness of a stationary point of the functional. If the minimization sequence belongs to a bounded set, we show that the following estimates of the convergence rate for the suggested method of the descent $$ J[q_k]\le J[q_0]\exp\{-c(k-1)\},\quad\|q_k-q_*\|^2_{L_2[-T,T]}\le CJ[q_0]\exp\{-c(k-1)\} $$ takes place.
@article{SJVM_1999_2_2_a3,
     author = {A. L. Karchevsky},
     title = {Behavior of the misfit functional for a~one-dimensional hyperbolic inverse problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {137--160},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a3/}
}
TY  - JOUR
AU  - A. L. Karchevsky
TI  - Behavior of the misfit functional for a~one-dimensional hyperbolic inverse problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 137
EP  - 160
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a3/
LA  - ru
ID  - SJVM_1999_2_2_a3
ER  - 
%0 Journal Article
%A A. L. Karchevsky
%T Behavior of the misfit functional for a~one-dimensional hyperbolic inverse problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 137-160
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a3/
%G ru
%F SJVM_1999_2_2_a3
A. L. Karchevsky. Behavior of the misfit functional for a~one-dimensional hyperbolic inverse problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 137-160. http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a3/

[1] Karchevsky A. L., “Properties of the misfit functional for a nonlinear one-dimentioanal coefficient hyperbolic inverse problem”, J. of Inverse and Ill-posed Problems, VSP. — The Notherlands, 5:2 (1997), 139–163 | DOI | MR | Zbl

[2] Kabanikhin S. I., “Numerical analysis of inverse problems”, J. of Inverse and Ill-Posed Problems, VSP. — The Notherlands, 3:4 (1995), 278–304 | DOI | MR | Zbl

[3] Karchevsky A. L., “Finite-Difference Coefficient Inverse Problem and Properteis of the Misfit Functional”, J. of Inverse and Ill-posed Problems, VSP. — The Notherlands, 6:5 (1998), 433–454 | MR

[4] Levitan V. M., “Ob asimptoticheskom povedenii spektralnoi funktsii i razlozhenii po sobstvennym funktsiyam uravneniya $\Delta u+\{\lambda-q(x_1,x_2,x_3)\}u=0$”, Trudy moskovskogo matematicheskogo obschestva, 4, 1955, 237–290 | MR

[5] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[6] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1980 | MR

[7] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[8] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[9] Kharlamov P. V., “Ob otsenke reshenii sistemy differentsialnykh uravnenii”, Ukrainskii matematicheskii zhurnal, 7:4 (1955), 471–473 | Zbl

[10] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR