The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence of the difference schemes of the second order of local approximation on space for a onedimensional heat conduction equation with variable factors on an arbitrary nonuniform grid is investigated. For the schemes with averaged coefficient of a thermal conduction and averaged right part the evaluations of a rate of convergence in a grid norm $L_2$, agreed with a smoothness of a solution of a boundary value problem are obtained.
@article{SJVM_1999_2_2_a2,
     author = {B. S. Jovanovi\'c and P. P. Matus and V. S. Shchehlik},
     title = {The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/}
}
TY  - JOUR
AU  - B. S. Jovanović
AU  - P. P. Matus
AU  - V. S. Shchehlik
TI  - The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 123
EP  - 136
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/
LA  - ru
ID  - SJVM_1999_2_2_a2
ER  - 
%0 Journal Article
%A B. S. Jovanović
%A P. P. Matus
%A V. S. Shchehlik
%T The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 123-136
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/
%G ru
%F SJVM_1999_2_2_a2
B. S. Jovanović; P. P. Matus; V. S. Shchehlik. The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/

[1] Berkovskii B. M., Polevikov V. K., Vychislitelnyi eksperiment v konvektsii, Izd-vo Universitetskoe, Minsk, 1988

[2] Guschin V. A., Schennikov V. V., “Ob odnoi monotonnoi raznostnoi skheme vtorogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 14:3 (1974), 789–792

[3] Ilin V. P., “Balansnye approksimatsii povyshennogo poryadka tochnosti dlya uravneniya Puassona”, Sib. mat. zhurn., 37:1 (1996), 151–161

[4] Samarskii A. A., Vabischevich P. N., Matus P. P., “Raznostnye skhemy povyshennogo poryadka tochnosti na neravnomernykh setkakh”, Differents. uravneniya, 32:2 (1996), 265–274 | MR

[5] Samarskii A. A., Vabischevich P. N., Matus P. P., “Raznostnye skhemy vtorogo poryadka tochnosti na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiz., 38:3 (1998), 413–424 | MR

[6] Jovanovich B. S., Matus P. P., Finite difference schemes on uniform meshes for parabolic problems with generalized solutions, Publ. Inst. Math., Belgrade (to appear) | Zbl

[7] Lazarov R. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Mat. sbornik. Novaya seriya, 117(159):4 (1982, Aprel), 469–480, Nauka, M. | MR

[8] Lions J. L., Magenes E., Problemes aux limites non homogenes et applications, Dunod, Paris, 1968

[9] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN Armenii, Erevan, 1979

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[11] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[12] Iovanovich B. S., Matus P. P., Scheglik B. C., “Raznostnye skhemy na neravnomernykh setkakh dlya parabolicheskogo uravneniya s peremennymi koeffitsientami i obobschennymi resheniyami”, Dokl. Natsionalnoi akademii nauk Belarusi, 42:6 (1998), 38–43 | MR

[13] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[14] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, Dokl. AN SSSR, 122:4 (1958), 562–565 | Zbl