Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1999_2_2_a2, author = {B. S. Jovanovi\'c and P. P. Matus and V. S. Shchehlik}, title = {The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {123--136}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/} }
TY - JOUR AU - B. S. Jovanović AU - P. P. Matus AU - V. S. Shchehlik TI - The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1999 SP - 123 EP - 136 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/ LA - ru ID - SJVM_1999_2_2_a2 ER -
%0 Journal Article %A B. S. Jovanović %A P. P. Matus %A V. S. Shchehlik %T The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 1999 %P 123-136 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/ %G ru %F SJVM_1999_2_2_a2
B. S. Jovanović; P. P. Matus; V. S. Shchehlik. The rates of convergence of the finite difference schemes on nonuniform meshes for parabolic equation with variable coefficients and weak solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a2/
[1] Berkovskii B. M., Polevikov V. K., Vychislitelnyi eksperiment v konvektsii, Izd-vo Universitetskoe, Minsk, 1988
[2] Guschin V. A., Schennikov V. V., “Ob odnoi monotonnoi raznostnoi skheme vtorogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 14:3 (1974), 789–792
[3] Ilin V. P., “Balansnye approksimatsii povyshennogo poryadka tochnosti dlya uravneniya Puassona”, Sib. mat. zhurn., 37:1 (1996), 151–161
[4] Samarskii A. A., Vabischevich P. N., Matus P. P., “Raznostnye skhemy povyshennogo poryadka tochnosti na neravnomernykh setkakh”, Differents. uravneniya, 32:2 (1996), 265–274 | MR
[5] Samarskii A. A., Vabischevich P. N., Matus P. P., “Raznostnye skhemy vtorogo poryadka tochnosti na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiz., 38:3 (1998), 413–424 | MR
[6] Jovanovich B. S., Matus P. P., Finite difference schemes on uniform meshes for parabolic problems with generalized solutions, Publ. Inst. Math., Belgrade (to appear) | Zbl
[7] Lazarov R. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Mat. sbornik. Novaya seriya, 117(159):4 (1982, Aprel), 469–480, Nauka, M. | MR
[8] Lions J. L., Magenes E., Problemes aux limites non homogenes et applications, Dunod, Paris, 1968
[9] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN Armenii, Erevan, 1979
[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[11] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[12] Iovanovich B. S., Matus P. P., Scheglik B. C., “Raznostnye skhemy na neravnomernykh setkakh dlya parabolicheskogo uravneniya s peremennymi koeffitsientami i obobschennymi resheniyami”, Dokl. Natsionalnoi akademii nauk Belarusi, 42:6 (1998), 38–43 | MR
[13] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987
[14] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, Dokl. AN SSSR, 122:4 (1958), 562–565 | Zbl