Using the Strang--Fix approximation for Monte Carlo calculating of multiple integrals
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the possibility of using the Strang–Fix approximation for constructing of optimal density in the standard Monte Carlo method for calculating multiple integrals is investigated. Optimal parameters of the constructed density are obtained. The comparison between the constructed important sampling method and the separation of main part method is provided. The combined method, which contains advantages of both algorithms, is suggested.
@article{SJVM_1999_2_2_a1,
     author = {A. V. Voitishek},
     title = {Using the {Strang--Fix} approximation for {Monte} {Carlo} calculating of multiple integrals},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a1/}
}
TY  - JOUR
AU  - A. V. Voitishek
TI  - Using the Strang--Fix approximation for Monte Carlo calculating of multiple integrals
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 111
EP  - 122
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a1/
LA  - ru
ID  - SJVM_1999_2_2_a1
ER  - 
%0 Journal Article
%A A. V. Voitishek
%T Using the Strang--Fix approximation for Monte Carlo calculating of multiple integrals
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 111-122
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a1/
%G ru
%F SJVM_1999_2_2_a1
A. V. Voitishek. Using the Strang--Fix approximation for Monte Carlo calculating of multiple integrals. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 2, pp. 111-122. http://geodesic.mathdoc.fr/item/SJVM_1999_2_2_a1/

[1] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[2] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[3] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[4] Voitishek A. V., “O dopustimom klasse vospolnenii dlya diskretno-stokhasticheskikh protsedur globalnoi otsenki funktsii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 1:2 (1998), 119–134 | MR

[5] Makhotkin O. A., “Kvantilnyi metod modelirovaniya diskretnykh sluchainykh velichin”, Teoriya i prilozheniya statisticheskogo modelirovaniya, AN SSSR. Sib. otd.-nie. VTs, Novosibirsk, 1989, 33–42 | MR | Zbl

[6] Devroi L., Derfi L., Neparamericheskoe otsenivanie plotnosti $(L_1)$, Mir, M., 1988 | MR

[7] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR