Model of the polarized radiation transfer in atmosphere-earth surface system
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general vectorial boundary-value problem for kinetic equation, describing the polarized radiation transfer in a planar layer with a horizontally nonhomogeneous anisotropically reflecting underlying surface, is not solved by the finite differences methods. Mathematical model, giving an asymptotically accurate solution to this problem in the slow growth functions class, has been proposed and justified. The new model has been stated by the influence functions and the spatial frequence characteristics method. This model is effective for the parallel computing.
@article{SJVM_1999_2_1_a8,
     author = {T. A. Sushkevich and S. A. Strelkov},
     title = {Model of the polarized radiation transfer in atmosphere-earth surface system},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a8/}
}
TY  - JOUR
AU  - T. A. Sushkevich
AU  - S. A. Strelkov
TI  - Model of the polarized radiation transfer in atmosphere-earth surface system
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 89
EP  - 98
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a8/
LA  - ru
ID  - SJVM_1999_2_1_a8
ER  - 
%0 Journal Article
%A T. A. Sushkevich
%A S. A. Strelkov
%T Model of the polarized radiation transfer in atmosphere-earth surface system
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 89-98
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a8/
%G ru
%F SJVM_1999_2_1_a8
T. A. Sushkevich; S. A. Strelkov. Model of the polarized radiation transfer in atmosphere-earth surface system. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 89-98. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a8/

[1] Rozenberg G. V., “Vektor-parametr Stoksa”, UFN, 56:1 (1955), 77–110

[2] Chandrasekar S., Perenos luchistoi energii, IIL, M., 1953

[3] Sushkevich T. A., Strelkov S. A., Ioltukhovskii A. A., Metod kharakteristik v zadachakh atmosfernoi optiki, Nauka, M., 1990 | MR | Zbl

[4] Zege E. P., Ivanov A. P., Katsev I. L., Perenos izobrazheniya v rasseivayuschei srede, Nauka i tekhnika, Minsk, 1985

[5] Belov V. V., “Metod funktsii Grina i lineino-sistemnyi podkhod v teorii perenosa i registratsii opticheskogo izlucheniya”, Optika atmosfery i okeana, 5:8 (1992), 823–828

[6] Elepov B. S., Kronberg A. A., Mikhailov G. A., Sabelfeld K. K., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | MR | Zbl

[7] Sushkevich T. A., “Reshenie obschei kraevoi zadachi teorii perenosa dlya ploskogo sloya s gorizontalnoi neodnorodnostyu”, Dokl. RAN, 339:2 (1994), 171–175 | MR | Zbl

[8] Sushkevich T. A., Kulikov A. K., Maksakova S. V., “K teorii opticheskogo peredatochnogo operatora”, Optika atmosfery i okeana, 7:6 (1994), 726–747

[9] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[10] Mikhailov G. A., Nazaraliev M. A., “Raschety polyarizatsii sveta v sfericheskoi atmosfere metodom Monte-Karlo”, Izv. AN SSSR. Seriya FAO, 7:4 (1971), 385–395

[11] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR

[12] Germogenova T. A., Konovalov N. V., Kuzmina M. G., “Osnovy matematicheskoi teorii perenosa polyarizovannogo izlucheniya (strogie rezultaty)”, Printsip invariantnosti i ego prilozheniya, Trudy Vsesoyuz. simpoziuma (Byurakan, 1981), Izd-vo AN ArmSSR, Erevan, 1989, 271–284

[13] Sushkevich T. A., Strelkov S. A., “Uchet diffuznogo otrazheniya pri reshenii vektornogo uravneniya perenosa”, Dokl. AN SSSR, 271:1 (1983), 89–93 | MR

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, GIFML, M., 1959 | MR