An error estimation in $\Sigma\Pi$-approximation via statistical methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 37-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper offers a statistical approach to obtain a numerical estimate of $\Sigma\Pi$-approximation algorithm efficiency on a fixed functional class. This approach consists of two steps. The first one is finding the distribution of $\Sigma\Pi$-approximation coefficients. The second one is the simulation of a random vector with obtained probability density and calculation the integer $s$ (number of summands in $\Sigma\Pi$-series) that provides given accuracy with given probability.
@article{SJVM_1999_2_1_a3,
     author = {K. I. Kutchinsky},
     title = {An error estimation in $\Sigma\Pi$-approximation via statistical methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/}
}
TY  - JOUR
AU  - K. I. Kutchinsky
TI  - An error estimation in $\Sigma\Pi$-approximation via statistical methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 37
EP  - 46
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/
LA  - en
ID  - SJVM_1999_2_1_a3
ER  - 
%0 Journal Article
%A K. I. Kutchinsky
%T An error estimation in $\Sigma\Pi$-approximation via statistical methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 37-46
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/
%G en
%F SJVM_1999_2_1_a3
K. I. Kutchinsky. An error estimation in $\Sigma\Pi$-approximation via statistical methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/

[1] Anderson T., Introduction to Multivariate Statistical Analysis, Fizmatgiz, Moscow, 1963 (In Russian)

[2] Baglay R. D., Smirnov K. K., “To processing two-dimensional signals on computers”, J. Comp. Math. and Math. Phys., 15:1 (1975), 241–248 (In Russian) | DOI | MR

[3] Girko V. L., Spectral Theory of Random Matrices, Nauka, Moscow, 1988 (In Russian) | MR

[4] Mikhailov G. A., Some Questions of the Monte Carlo Method Theory, Nauka, Novosibirsk, 1974 (In Russian)

[5] Pospelov V. V., On approximation for functions of several variables by the sums of products of functions of one variable, Preprint AN SSSR. IAM; No 32, Moscow, 1978 (In Russian)

[6] Pospelov V. V., “On error in approximation functions of two variable by the sums of products of functions of one variable”, J. Comp. Math. and Math. Phys., 18:5 (1978), 1307–1308 (In Russian) | MR | Zbl

[7] Pospelov V. V., “On theory of singular decomposition in tensor product of Hilbert spaces”, Matematichesky Sbornik, 185:7 (1994), 109–118 (In Russian) | MR | Zbl

[8] Schmidt E., “Zur Theorie der linearen und nichtlinearen Integralgleichungen”, Math. Ann., 1907, no. 6, 433–476 | DOI | MR | Zbl

[9] Vasilenko V. A., “The best finite dimensional $\Sigma\Pi$-approximations”, Sov. J. Numer. Math. Modelling, 5:4–5 (1990), 435–443 | DOI | MR | Zbl