An error estimation in $\Sigma\Pi$-approximation via statistical methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 37-46
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper offers a statistical approach to obtain a numerical estimate of $\Sigma\Pi$-approximation algorithm efficiency on a fixed functional class. This approach consists of two steps. The first one is finding the distribution of $\Sigma\Pi$-approximation coefficients. The second one is the simulation of a random vector with obtained probability density and calculation the integer $s$ (number of summands in $\Sigma\Pi$-series) that provides given accuracy with given probability.
@article{SJVM_1999_2_1_a3,
author = {K. I. Kutchinsky},
title = {An error estimation in $\Sigma\Pi$-approximation via statistical methods},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {37--46},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/}
}
TY - JOUR AU - K. I. Kutchinsky TI - An error estimation in $\Sigma\Pi$-approximation via statistical methods JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1999 SP - 37 EP - 46 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/ LA - en ID - SJVM_1999_2_1_a3 ER -
K. I. Kutchinsky. An error estimation in $\Sigma\Pi$-approximation via statistical methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a3/