Stationary problems of the theory of elasticity with a~small viscosity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some singularly perturbed boundary value problems in the theory of elasticity, arising in averaging of laminated media with nonstandard contact conditions on the interface boundary, have been studied. The studied problems have been formulated in the variational set-ups, and theorems on convergence to solutions of the limiting ones have been proved.
@article{SJVM_1999_2_1_a1,
     author = {Yu. A. Bogan},
     title = {Stationary problems of the theory of elasticity with a~small viscosity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a1/}
}
TY  - JOUR
AU  - Yu. A. Bogan
TI  - Stationary problems of the theory of elasticity with a~small viscosity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 13
EP  - 20
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a1/
LA  - ru
ID  - SJVM_1999_2_1_a1
ER  - 
%0 Journal Article
%A Yu. A. Bogan
%T Stationary problems of the theory of elasticity with a~small viscosity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 13-20
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a1/
%G ru
%F SJVM_1999_2_1_a1
Yu. A. Bogan. Stationary problems of the theory of elasticity with a~small viscosity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a1/

[1] Lene F., Legullion G., “Etude de l'influence d'un glissement entre les constituants d'un materialcomposite sur les coefficients de comportement effectiffs”, J. de Mec., 20:3 (1981), 509–536 | MR

[2] Santosa F., Symes W. W., “A model for a composite with anisotropic dissipation by homogenization”, Int. J. Solids Struct., 25:4 (1989), 381–392 | DOI | Zbl

[3] Sanches-Palencia E., Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin, 1980

[4] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[5] Molotkov L. A., Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984

[6] Bogan Yu. A., “Dve kraevye zadachi dlya silno neodnorodnogo uprugogo koltsa”, Prikl. mat. i mekh., 1983, no. 6, 993–998 | MR

[7] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990

[8] Joly P., “Some trace theorems in anisotropic Sobolev spaces”, SIAM J. Math. Anal., 23:3 (1992), 799–819 | DOI | MR | Zbl

[9] Bogan Yu. A., “Odin klass singulyarno vozmuschennykh kraevykh zadach v dvumernoi teorii uprugosti”, Prikl. mekh. i tekhn. fiz., 1987, no. 2, 138–143