Spline approximation in tensor product spaces
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 373-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The normal solvability of the energy operator for spline approximation problem in tensor product of abstract Hilbert spaces is proved. Hence, the correctness of the problem (the existence of a solution) is derived. The general method for the regularization of a semi-Hilbert space reproducing map is proposed. It allows to construct the reproducing map in tensor case. The general theory is illustrated by examples.
@article{SJVM_1998_1_4_a7,
     author = {A. I. Rozhenko},
     title = {Spline approximation in tensor product spaces},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--390},
     year = {1998},
     volume = {1},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - Spline approximation in tensor product spaces
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 373
EP  - 390
VL  - 1
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/
LA  - ru
ID  - SJVM_1998_1_4_a7
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T Spline approximation in tensor product spaces
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 373-390
%V 1
%N 4
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/
%G ru
%F SJVM_1998_1_4_a7
A. I. Rozhenko. Spline approximation in tensor product spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 373-390. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] Imamov A., Nekotorye voprosy teorii splainov v gilbertovom prostranstve, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Novosibirsk, 1977

[3] Ewald S., Mühlig H., Mulansky B., “Bivariate interpolating and smoothing tensor product splines”, Splines in Numerical Analysis, eds. J. W. Schmidt, H. Späth, Akademie-Verlag, Berlin, 1989, 55–68 | MR

[4] Bezhaev A. Yu., Rozhenko A. I., Variatsionnye splainy v tenzornykh proizvedeniyakh prostranstv, Preprint AN SSSR. Sib. otd-nie. VTs, No 853, Novosibirsk, 1989 | MR | Zbl

[5] Light W. A., Cheney W., Approximation Theory in Tensor Product Spaces, Lect. Notes in Math., 1169, Springer-Verlag, 1985 | MR | Zbl

[6] Saphar P., “Produits tensoriels d'espaces de Banach et classes d'applications linéaires”, Studia Math., 38 (1970), 71–100 | MR | Zbl

[7] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., 3, Special, NCC Publisher, Novosibirsk, 1993

[8] Kutateladze S. S., Osnovy funktsionalnogo analiza, 2-e izd., dop., Izd-vo IM SO RAN, Novosibirsk, 1995 | MR | Zbl

[9] Rozhenko A. I., Abstraktnaya teoriya splainov: Ucheb. posobie, Izd-vo NGU, Novosibirsk, 1998 (to appear)

[10] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[11] Bezhaev A. Yu., Vosproizvodyaschie otobrazheniya i vektornye splain-funktsii, Preprint, AN SSSR. Sib. otd-nie. VTs; No 830, Novosibirsk, 1989 | MR | Zbl

[12] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985