Spline approximation in tensor product spaces
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 373-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

The normal solvability of the energy operator for spline approximation problem in tensor product of abstract Hilbert spaces is proved. Hence, the correctness of the problem (the existence of a solution) is derived. The general method for the regularization of a semi-Hilbert space reproducing map is proposed. It allows to construct the reproducing map in tensor case. The general theory is illustrated by examples.
@article{SJVM_1998_1_4_a7,
     author = {A. I. Rozhenko},
     title = {Spline approximation in tensor product spaces},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--390},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - Spline approximation in tensor product spaces
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 373
EP  - 390
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/
LA  - ru
ID  - SJVM_1998_1_4_a7
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T Spline approximation in tensor product spaces
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 373-390
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/
%G ru
%F SJVM_1998_1_4_a7
A. I. Rozhenko. Spline approximation in tensor product spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 373-390. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a7/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] Imamov A., Nekotorye voprosy teorii splainov v gilbertovom prostranstve, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Novosibirsk, 1977

[3] Ewald S., Mühlig H., Mulansky B., “Bivariate interpolating and smoothing tensor product splines”, Splines in Numerical Analysis, eds. J. W. Schmidt, H. Späth, Akademie-Verlag, Berlin, 1989, 55–68 | MR

[4] Bezhaev A. Yu., Rozhenko A. I., Variatsionnye splainy v tenzornykh proizvedeniyakh prostranstv, Preprint AN SSSR. Sib. otd-nie. VTs, No 853, Novosibirsk, 1989 | MR | Zbl

[5] Light W. A., Cheney W., Approximation Theory in Tensor Product Spaces, Lect. Notes in Math., 1169, Springer-Verlag, 1985 | MR | Zbl

[6] Saphar P., “Produits tensoriels d'espaces de Banach et classes d'applications linéaires”, Studia Math., 38 (1970), 71–100 | MR | Zbl

[7] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., 3, Special, NCC Publisher, Novosibirsk, 1993

[8] Kutateladze S. S., Osnovy funktsionalnogo analiza, 2-e izd., dop., Izd-vo IM SO RAN, Novosibirsk, 1995 | MR | Zbl

[9] Rozhenko A. I., Abstraktnaya teoriya splainov: Ucheb. posobie, Izd-vo NGU, Novosibirsk, 1998 (to appear)

[10] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[11] Bezhaev A. Yu., Vosproizvodyaschie otobrazheniya i vektornye splain-funktsii, Preprint, AN SSSR. Sib. otd-nie. VTs; No 830, Novosibirsk, 1989 | MR | Zbl

[12] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985