On the differentially conditioned function generating based on degree potentials
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 363-371
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of the strong linear independence for the functions of many arguments is introduced. Multiparametric family containing degree potentials (of arbitrary indices) and all their partial derivatives is studied. Strong linear independence is proved for it. The function generating problem with differential conditions referred to scattered data is formulated. Geometric aspect of this problem is examined and technology based on degree potentials for the problem solving is argued.
@article{SJVM_1998_1_4_a6,
author = {V. A. Leus},
title = {On the differentially conditioned function generating based on degree potentials},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {363--371},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/}
}
TY - JOUR AU - V. A. Leus TI - On the differentially conditioned function generating based on degree potentials JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 363 EP - 371 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/ LA - ru ID - SJVM_1998_1_4_a6 ER -
V. A. Leus. On the differentially conditioned function generating based on degree potentials. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 363-371. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/