On the differentially conditioned function generating based on degree potentials
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 363-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the strong linear independence for the functions of many arguments is introduced. Multiparametric family containing degree potentials (of arbitrary indices) and all their partial derivatives is studied. Strong linear independence is proved for it. The function generating problem with differential conditions referred to scattered data is formulated. Geometric aspect of this problem is examined and technology based on degree potentials for the problem solving is argued.
@article{SJVM_1998_1_4_a6,
     author = {V. A. Leus},
     title = {On the differentially conditioned function generating based on degree potentials},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/}
}
TY  - JOUR
AU  - V. A. Leus
TI  - On the differentially conditioned function generating based on degree potentials
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 363
EP  - 371
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/
LA  - ru
ID  - SJVM_1998_1_4_a6
ER  - 
%0 Journal Article
%A V. A. Leus
%T On the differentially conditioned function generating based on degree potentials
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 363-371
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/
%G ru
%F SJVM_1998_1_4_a6
V. A. Leus. On the differentially conditioned function generating based on degree potentials. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 363-371. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a6/

[1] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka, L., 1991 | MR | Zbl

[2] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1992 | MR

[3] Leus V. A., “Reshenie zadach geologicheskoi kompyuternoi kartografii na osnove potentsial-polinomov”, Geologiya i geofizika, 39:10 (1998), 1417–1424

[4] Leus V. A., “Silnaya lineinaya nezavisimost bazisa i chislennoe reshenie nekotorykh obratnykh zadach”, Tez. dokl. kongressa INPRIM-98 (Novosibirsk, 1998), 146