Stability of an inverse problem for transport equation with discrete data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 337-345
Voir la notice de l'article provenant de la source Math-Net.Ru
A validity of numerical algorithms is under investigation in this article. Namely, stability for twodimensional
problem of restoring the right-hand side in the transport equation by discrete data is considered. It is suggested that the radiation incident on the boundary is omitted. The outgoing radiation is known at discrete numbers on the boundary. Stability theorems for two problem formulations are proved. In the former case an interparticle collision is not considered. In the latter case the transport equation is considered with the integral term and absorption, and scattering properties of the medium are taking into account.
@article{SJVM_1998_1_4_a4,
author = {O. A. Klimenko},
title = {Stability of an inverse problem for transport equation with discrete data},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {337--345},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/}
}
TY - JOUR AU - O. A. Klimenko TI - Stability of an inverse problem for transport equation with discrete data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 337 EP - 345 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/ LA - en ID - SJVM_1998_1_4_a4 ER -
O. A. Klimenko. Stability of an inverse problem for transport equation with discrete data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 337-345. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/