Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1998_1_4_a4, author = {O. A. Klimenko}, title = {Stability of an inverse problem for transport equation with discrete data}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {337--345}, publisher = {mathdoc}, volume = {1}, number = {4}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/} }
TY - JOUR AU - O. A. Klimenko TI - Stability of an inverse problem for transport equation with discrete data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 337 EP - 345 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/ LA - en ID - SJVM_1998_1_4_a4 ER -
O. A. Klimenko. Stability of an inverse problem for transport equation with discrete data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 337-345. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a4/
[1] Muhometov R. G., “Stability estimate for one problem of computer tomography”, The questions of well-posedness of analysis problems, Siberian Division. Institute of Math., Novosibirsk, 1989, 122–124 (In Russian)
[2] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Methods of spline functions, Nauka, M., 1980 (In Russian) | MR
[3] Romanov V. G., “Conditional stability estimates for the two-dimensional problem of restoring the right-hand side and absorption in the transport equation”, SMJ, 35:6 (1994), 1184–1201 | MR | Zbl