On incomplete factorization methods with generalized compensation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 321-336
Voir la notice de l'article provenant de la source Math-Net.Ru
The iterative incomplete factorization methods are described on the base of definition of preconditioning
$B$ matrix from generalized compensation principle $B_{y_k}=A_{y_k}$, $k=1,\dots,m$, where $A$ is the matrix of original system of linear algebraic equations and $\{y_k\}$ is the set of so called probe vectors. The correctness of such algorithms and conditions of positive definiteness of preconditioning matrices are investigated for solution to the Stieltjes type block-tridiagonal systems. The estimates of condition number of matrix product $B^{-1}A$, that define the iterative convergence rate, are derived in the terms of the properties of original matrices.
@article{SJVM_1998_1_4_a3,
author = {V. P. Il'in and K. Yu. Laevskii},
title = {On incomplete factorization methods with generalized compensation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {321--336},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/}
}
TY - JOUR AU - V. P. Il'in AU - K. Yu. Laevskii TI - On incomplete factorization methods with generalized compensation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 321 EP - 336 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/ LA - ru ID - SJVM_1998_1_4_a3 ER -
V. P. Il'in; K. Yu. Laevskii. On incomplete factorization methods with generalized compensation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 321-336. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/