On incomplete factorization methods with generalized compensation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 321-336

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative incomplete factorization methods are described on the base of definition of preconditioning $B$ matrix from generalized compensation principle $B_{y_k}=A_{y_k}$, $k=1,\dots,m$, where $A$ is the matrix of original system of linear algebraic equations and $\{y_k\}$ is the set of so called probe vectors. The correctness of such algorithms and conditions of positive definiteness of preconditioning matrices are investigated for solution to the Stieltjes type block-tridiagonal systems. The estimates of condition number of matrix product $B^{-1}A$, that define the iterative convergence rate, are derived in the terms of the properties of original matrices.
@article{SJVM_1998_1_4_a3,
     author = {V. P. Il'in and K. Yu. Laevskii},
     title = {On incomplete factorization methods with generalized compensation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {321--336},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/}
}
TY  - JOUR
AU  - V. P. Il'in
AU  - K. Yu. Laevskii
TI  - On incomplete factorization methods with generalized compensation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 321
EP  - 336
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/
LA  - ru
ID  - SJVM_1998_1_4_a3
ER  - 
%0 Journal Article
%A V. P. Il'in
%A K. Yu. Laevskii
%T On incomplete factorization methods with generalized compensation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 321-336
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/
%G ru
%F SJVM_1998_1_4_a3
V. P. Il'in; K. Yu. Laevskii. On incomplete factorization methods with generalized compensation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 321-336. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a3/