On best quadrature formulas in the reproducing kernel Hilbert space
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 313-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

The best quadrature formulas with free nodes in some Hilbert space with a reproducing kernel are considered. It is shown that they are at the same time optimal among the formulas with the same nodes and having directional derivatives. To prove this, the error norm gradient of the formula with the optimal weights is determined as a function of nodes.
@article{SJVM_1998_1_4_a2,
     author = {A. V. Gavrilov},
     title = {On best quadrature formulas in the reproducing kernel {Hilbert} space},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {313--320},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a2/}
}
TY  - JOUR
AU  - A. V. Gavrilov
TI  - On best quadrature formulas in the reproducing kernel Hilbert space
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 313
EP  - 320
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a2/
LA  - ru
ID  - SJVM_1998_1_4_a2
ER  - 
%0 Journal Article
%A A. V. Gavrilov
%T On best quadrature formulas in the reproducing kernel Hilbert space
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 313-320
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a2/
%G ru
%F SJVM_1998_1_4_a2
A. V. Gavrilov. On best quadrature formulas in the reproducing kernel Hilbert space. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 4, pp. 313-320. http://geodesic.mathdoc.fr/item/SJVM_1998_1_4_a2/

[1] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR

[2] Nikolskii S. M., “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, UMN, 5:2 (1950), 165–177 | MR

[3] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo IM SO RAN, Novosibirsk, 1996 | Zbl

[4] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., 3, Special, NCC Publisher, Novosibirsk, 1993

[5] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[6] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:1–3 (1950), 337–407 | MR

[7] Paulik A., “Zur Existern optimaler Quadraturformeln mit freien Knoten bei Integration analytiscer Funktionen”, Numer. Math., 27:4 (1977), 395–406 | DOI | MR

[8] Andersson J.-E., Bojanov B. D., “A Note on the Optimal Quadrature in $H^p$”, Numer. Math., 44:2 (1984), 301–308 | DOI | MR | Zbl

[9] Larkin F. M., “Optimal Approximation in Hilbert Spaces with Reproducing Kernel Functions”, Math. Comp., 24:112 (1970), 911–921 | MR

[10] Zhensykbaev A. A., “Kharakteristicheskie svoistva nailuchshikh kvadraturnykh formul”, Sib. mat. zhurn., 20:1 (1979), 49–68 | MR | Zbl

[11] Baratchart L., Olivi M., Wielonsky F., “On a rational approximation problem in the real Hardy space $H_2$”, Theor. Comput. Sci., 94:2 (1992), 175–197 | DOI | MR | Zbl