Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1998_1_3_a4, author = {B. G. Mikhailenko and O. N. Soboleva}, title = {Absorbing boundary conditions for the elastic theory equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {261--269}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a4/} }
TY - JOUR AU - B. G. Mikhailenko AU - O. N. Soboleva TI - Absorbing boundary conditions for the elastic theory equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 261 EP - 269 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a4/ LA - ru ID - SJVM_1998_1_3_a4 ER -
B. G. Mikhailenko; O. N. Soboleva. Absorbing boundary conditions for the elastic theory equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 3, pp. 261-269. http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a4/
[1] Clayton R., Engquist B., “Absorbing boundary conditions for acoustic and elastic wave equations”, Bull. Seismological Soc. America, 67:6 (1977), 1529–1540
[2] Engquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31:139 (1977), 629–651 | MR | Zbl
[3] Collino F., “High order absorbing boundary conditions for wave propagation models”, Mathematical and Numerical Aspects of Wave Propagation, Second Int. Conf., eds. R. Kleinman, D. Colton, F. Santosa, I. Stakgold, SIAM, 1996, 161–171 | MR
[4] Lindmann E. L., “Free-space boundary conditions for the time dependent wave equation”, J. Comp. Phys., 18 (1975), 237–243
[5] Mikhailenko B. G., Seismicheskie polya v slozhno postroennykh sredakh, Izd. VTs SO AN SSSR, Novosibirsk, 1988
[6] Aki K., Richard P., Kolichestvennaya seismologiya, Mir, M., 1983