Subdivision of a~plane and set operations on domains
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 3, pp. 227-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the description of an algorithm for subdivision of a plane into non-intersecting domains by a finite set of the simple Jordan arcs. Each resulting domain is defined via a set of its boundary arcs and its indicator (a bounded or an unbounded domain), which determines the characteristic domain function. Also, the algorithm for implementation of a regularized set operations on domains without cut-offs is proved. It is based on the subdivision of a plane by common boundaries on sub-domains and construction from the latter of a result of operation. To compute intersection points of the boundary arcs the Newton method is applied whose square convergence is proved for the case of convex and monotone curves.
@article{SJVM_1998_1_3_a2,
     author = {V. A. Debelov and A. M. Matsokin and S. A. Upol'nikov},
     title = {Subdivision of a~plane and set operations on domains},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {227--247},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a2/}
}
TY  - JOUR
AU  - V. A. Debelov
AU  - A. M. Matsokin
AU  - S. A. Upol'nikov
TI  - Subdivision of a~plane and set operations on domains
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 227
EP  - 247
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a2/
LA  - ru
ID  - SJVM_1998_1_3_a2
ER  - 
%0 Journal Article
%A V. A. Debelov
%A A. M. Matsokin
%A S. A. Upol'nikov
%T Subdivision of a~plane and set operations on domains
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 227-247
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a2/
%G ru
%F SJVM_1998_1_3_a2
V. A. Debelov; A. M. Matsokin; S. A. Upol'nikov. Subdivision of a~plane and set operations on domains. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 3, pp. 227-247. http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a2/

[1] Foks A., Pratt M., Vychislitelnaya geometriya. Primenenie v proektirovanii i na proizvodstve, Mir, M., 1982 | MR

[2] Matematicheskii entsiklopedicheskii slovar, Sovetskaya entsiklopediya, M., 1988 | MR

[3] Aleksandrov P. S., Kombinatornaya topologiya, Gos. ob'ed. n.-t. izd-vo NKTP SSSR, M., L., 1947 | MR

[4] Tilove R. B., “Set Membership Classification: A Unified Approach to Geometric Intersection Problem”, IEEE Trans. on Comput., 29:10 (1980), 874–883 | DOI | MR

[5] Upolnikov S. A., “Agoritmy konstruirovaniya modelei trekhmernykh ob'ektov na EVM”, Mashinnaya grafika i ee prilozheniya, Sb. nauch. tr. VTs SO AN SSSR, Novosibirsk, 1983, 115–135

[6] Upolnikov S. A., “Algoritmy realizatsii teoretiko-mnozhestvennykh operatsii nad mnogogrannikami”, Voprosy kibernetiki. Problemy teorii i praktiki avtomatizatsii proektirovaniya, 108, M., 1985, 139–148 | MR

[7] Kharari F., Teoriya grafov, Mir, M., 1973 (Per. s angl.) | MR

[8] Sederberg T. W., Nishita T., “Curve Intersection using Bezier clipping”, Computer Aided Design, 22:9 (1990), 538–549 | DOI | Zbl

[9] Samarskii A. A., Gulin A. V., Chislennye metody. Ucheb. posobie dlya vuzov, Nauka, M., 1989 | MR

[10] Van-der-Varden B. L., Algebra, Nauka, M., 1976 | MR