A~model of the polarized radiation transfer in a~planar layer with interface of two media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 183-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new mathematical model is stated for the polarized radiation transfer in the two-media planar layer with internal reflecting and refractins interface. Solution of the general vectorial boundary-value problem for the kinetic equation is reduced to computing the vectorial optical transfer operator (VOTO). The VOTO kernels are tensors of the influence functions (TIP) of both media. The basic models of the vectorial influence functions (VIF's) are distinguished. The $T$-matrix method is developed and generalized to a multiple scattering theory with the mechanism of the radiation polarization and depolarization in two-media system taken into account.
@article{SJVM_1998_1_2_a6,
     author = {T. A. Sushkevich and S. A. Strelkov and A. K. Kulikov and S. V. Maksakova},
     title = {A~model of the polarized radiation transfer in a~planar layer with interface of two media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a6/}
}
TY  - JOUR
AU  - T. A. Sushkevich
AU  - S. A. Strelkov
AU  - A. K. Kulikov
AU  - S. V. Maksakova
TI  - A~model of the polarized radiation transfer in a~planar layer with interface of two media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 183
EP  - 194
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a6/
LA  - ru
ID  - SJVM_1998_1_2_a6
ER  - 
%0 Journal Article
%A T. A. Sushkevich
%A S. A. Strelkov
%A A. K. Kulikov
%A S. V. Maksakova
%T A~model of the polarized radiation transfer in a~planar layer with interface of two media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 183-194
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a6/
%G ru
%F SJVM_1998_1_2_a6
T. A. Sushkevich; S. A. Strelkov; A. K. Kulikov; S. V. Maksakova. A~model of the polarized radiation transfer in a~planar layer with interface of two media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 183-194. http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a6/

[1] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[2] Rozenberg G. V., “Vektor-parametr Stoksa”, UFN, 56:1 (1955), 77–110

[3] Fedorov F. I., Teoriya girotropii, Nauka i tekhnika, Minsk, 1976

[4] Azzam R., Bashara N., Ellipsometriya i polyarizovannyi svet, Mir, M., 1981

[5] Sushkevich T. A., Strelkov S. A., Ioltukhovskii A. A., Metod kharakteristik v zadachakh atmosfernoi optiki, Nauka, M., 1990 | MR | Zbl

[6] Sushkevich T. A., Strelkov S. A., Maksakova S. V., Opticheskii peredatochnyi operator sistemy perenosa polyarizovannogo izlucheniya, Preprint No 36, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 1997 | Zbl

[7] Sushkevich T. A., Strelkov S. A., Maksakova S. V., “K teorii vektornogo opticheskogo peredatochnogo operatora”, Optika atm. i okeana, 10:10 (1997), 1–13

[8] Sushkevich T. A., Strelkov S. A., “Funktsiya vliyaniya obschei vektornoi kraevoi zadachi teorii perenosa”, Doklady RAN (to appear)

[9] Sushkevich T. A., “Reshenie obschei kraevoi zadachi teorii perenosa dlya ploskogo sloya s gorizontalnoi neodnorodnostyu”, Doklady RAN, 339:2 (1994), 171–175 | MR | Zbl

[10] Sushkevich T. A., Kulikov A. K., Maksakova S. V., “K teorii opticheskogo peredatochnogo operatora”, Optika atm. i okeana, 7:6 (1994), 726–747

[11] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, GONTI NKTP SSSR, L., M., 1938

[12] Sushkevich T. A., Strelkov S. A., “Uchet diffuznogo otrazheniya pri reshenii vektornogo uravneniya perenosa”, Doklady AN SSSR, 271:1 (1983), 89–93 | MR

[13] Zege E. P., Ivanov A. P., Katsev I. L., Perenos izobrazheniya v rasseivayuschei srede, Nauka i tekhnika, Minsk, 1985

[14] Paramonov L. E., Metod $T$-matrits i kvantovaya teoriya uglovogo momenta v zadachakh rasseyaniya i pogloscheniya sveta ansamblyami chastits nesfericheskoi formy, Dis. $\dots$ dokt. fiz.-mat. nauk, Tomsk, 1995

[15] V. K. Varadan, V. V. Varadan (eds.), Acoustic, electromagnetic and elastic wave scattering-focus in $T$-matrix approach, Pergamon Press, N.-Y., 1980

[16] Sushkevich T. A., “Reshenie kraevoi zadachi teorii perenosa dlya ploskogo sloya s gorizontalno-neodnorodnoi granitsei razdela dvukh sred”, Doklady RAN, 350:4 (1996), 460–464 | MR | Zbl

[17] Sushkevich T. A., Kulikov A. K., Maksakova S. V., Strelkov S. A., “K teorii opticheskogo peredatochnogo operatora sistemy “atmosfera-okean””, Optika atm. i okeana, 9:1 (1996), 30–44

[18] Elepov B. C., Kronberg A. A., Mikhailov G. A., Sabelfeld K. K., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980, 174 pp. | MR | Zbl

[19] Sushkevich T. A., Strelkov S. A., Vladimirova E. V., Ignateva E. I., Kulikov A. K., Maksakova S. V., Algoritm rascheta prostranstvenno-chastotnykh kharakteristik. -, Preprint No 11, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 1997 | Zbl

[20] Strelkov S. A., Sushkevich T. A., Kulikov A. K., Maksakova S. V., Matematicheskaya model opisaniya rasprostraneniya millimetrovykh voln v zemnoi atmosfere s gidrometeorami, Preprint No 109, Institut prikladnoi matematiki im. M. V. Keldysha RAN, M., 1996