On characterization of limit point in the iterative prox-regularization method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 143-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the dependence of a solution on the points generated in the iterative prox-regularization method as applied to semicoercive variational inequalities.
@article{SJVM_1998_1_2_a3,
     author = {R. V. Namm},
     title = {On characterization of limit point in the iterative prox-regularization method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {143--152},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/}
}
TY  - JOUR
AU  - R. V. Namm
TI  - On characterization of limit point in the iterative prox-regularization method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 143
EP  - 152
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/
LA  - ru
ID  - SJVM_1998_1_2_a3
ER  - 
%0 Journal Article
%A R. V. Namm
%T On characterization of limit point in the iterative prox-regularization method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 143-152
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/
%G ru
%F SJVM_1998_1_2_a3
R. V. Namm. On characterization of limit point in the iterative prox-regularization method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, 2-e izd., Nauka, M., 1970 | Zbl

[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[3] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[4] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[5] Moreau J. J., “Proximite et dualite dans un espace Hilbertien”, Bull. Soc. Math. France, 93 (1965), 273–299 | MR | Zbl

[6] Martinet B., “Regularisation d'inequations variationelles par approximations successives”, RIRO, 4:3 (1970), 154–159 | MR

[7] Martinet B., “Determination approchee d'un point fixe d'une application pseudocontractante”, C. R. Acad. Sci., 274:2 (1972), 163–165 | MR | Zbl

[8] Pshenichnyi B. I., Metod linearizatsii, Nauka, M., 1983 | MR

[9] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint, VNII sistemnykh issledovanii, M., 1979

[10] Antipin A. S., “O skorosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, ZhVMiMF, 5 (1995), 688–704 | MR | Zbl

[11] Rockafellar R. T., “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”, Math. Oper. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl

[12] Poliquin R. A. and Rockafellar R. T., “Prox-regular functions in variational analysis”, Trans. Amer. Math. Soc., 348:5 (1996), 1805–1838 | DOI | MR | Zbl

[13] Namm R. V., “O nekotorykh algoritmakh dlya resheniya zadachi Sinorini”, Optimizatsiya, 1983, no. 33, 63–78 | MR

[14] Kustova V. I., “Metod resheniya kontaktnoi zadachi so slabo koertsitivnym funktsionalom”, Optimizatsiya, 1985, no. 36, 31–48 | MR | Zbl

[15] Kaplan A. A., “Ob ustoichivosti metodov resheniya zadach vypuklogo programmirovaniya i variatsionnykh neravenstv”, Modeli i metody optimizatsii, Trudy Instituta matematiki SO AN SSSR, 10, 1988, 132–159 | Zbl

[16] Namm R. V., “O skorosti skhodimosti algoritma s rgokh-regulyarizatsiei dlya resheniya zadachi Sinorini”, Optimizatsiya, 1985, no. 36, 56–62 | MR

[17] Namm R. V., “O skorosti skhodimosti algoritma s prox-regulyarizatsiei dlya resheniya variatsionnykh neravenstv so slabo koertsitivnym operatorom”, Optimizatsiya, 1988, no. 43, 49–61 | MR | Zbl

[18] Kaplan A. A., Namm R. V., “Ob otsenke skorosti skhodimosti iteratsionnykh protsessov s prokh-regulyarizatsiei”, Issledovaniya po uslovnoi korrektnosti zadach matematicheskoi fiziki, Novosibirsk, 1989, 60–77 | MR

[19] Namm R. V., “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, 1997, 214–228 | MR | Zbl

[20] Zolotukhin A. Ya., Metod minimizatsii negladkikh funktsionalov, osnovannyi na algoritme poshagovoi prokh-regulyarizatsii, Preprint, VTs DVO RAN, Khabarovsk, 1996

[21] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[22] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[23] Fridman A., Variatsionnye printsipy i zadachi so svobodnymi granitsami, Nauka, M., 1990 | MR

[24] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR