On characterization of limit point in the iterative prox-regularization method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 143-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the dependence of a solution on the points generated in the iterative prox-regularization method as applied to semicoercive variational inequalities.
@article{SJVM_1998_1_2_a3,
     author = {R. V. Namm},
     title = {On characterization of limit point in the iterative prox-regularization method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {143--152},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/}
}
TY  - JOUR
AU  - R. V. Namm
TI  - On characterization of limit point in the iterative prox-regularization method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 143
EP  - 152
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/
LA  - ru
ID  - SJVM_1998_1_2_a3
ER  - 
%0 Journal Article
%A R. V. Namm
%T On characterization of limit point in the iterative prox-regularization method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 143-152
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/
%G ru
%F SJVM_1998_1_2_a3
R. V. Namm. On characterization of limit point in the iterative prox-regularization method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 143-152. http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a3/