@article{SJVM_1998_1_1_a4,
author = {L. D. Menikhes and V. P. Tanana},
title = {The finite-dimensional approximation for the {Lavrent'ev} method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {59--66},
year = {1998},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/}
}
L. D. Menikhes; V. P. Tanana. The finite-dimensional approximation for the Lavrent'ev method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/
[1] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR
[2] Tanana V. P., “Konechnomernaya approksimatsiya metoda regulyarizatsii pri reshenii obratnykh zadach”, DAN SSSR, 277:3 (1984), 557–559 | MR | Zbl
[3] Menikhes L. D., Tanana V. P., “A convergence criterion for approximations in the residual method in Banach spaces”, Journal of Inverse and Ill-Posed Problems, 5:3 (1997), 255–264 | DOI | MR | Zbl
[4] Vasin V. V., “Diskretnaya skhodimost i konechnomernaya approksimatsiya regulyarizuyuschikh algoritmov”, Zhurn. vychislit. matem. i mat. fiz., 19:1 (1979), 11–21 | MR | Zbl
[5] Danilin A. R., “Ob usloviyakh skhodimosti konechnomernykh approksimatsii metoda nevyazki”, Izv. vuzov. Matematika, 1980, no. 11, 38–40 | MR | Zbl
[6] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR
[7] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, Mir, M., 1977 | MR