The finite-dimensional approximation for the Lavrent'ev method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalization of the Lavrent'ev method for a solution of ill-posed problems is considered. The convergence criterion for the finite-dimensional approximation in terms of duality of the Banach spaces has been obtained.
@article{SJVM_1998_1_1_a4,
     author = {L. D. Menikhes and V. P. Tanana},
     title = {The finite-dimensional approximation for the {Lavrent'ev} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/}
}
TY  - JOUR
AU  - L. D. Menikhes
AU  - V. P. Tanana
TI  - The finite-dimensional approximation for the Lavrent'ev method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 59
EP  - 66
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/
LA  - ru
ID  - SJVM_1998_1_1_a4
ER  - 
%0 Journal Article
%A L. D. Menikhes
%A V. P. Tanana
%T The finite-dimensional approximation for the Lavrent'ev method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 59-66
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/
%G ru
%F SJVM_1998_1_1_a4
L. D. Menikhes; V. P. Tanana. The finite-dimensional approximation for the Lavrent'ev method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a4/

[1] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[2] Tanana V. P., “Konechnomernaya approksimatsiya metoda regulyarizatsii pri reshenii obratnykh zadach”, DAN SSSR, 277:3 (1984), 557–559 | MR | Zbl

[3] Menikhes L. D., Tanana V. P., “A convergence criterion for approximations in the residual method in Banach spaces”, Journal of Inverse and Ill-Posed Problems, 5:3 (1997), 255–264 | DOI | MR | Zbl

[4] Vasin V. V., “Diskretnaya skhodimost i konechnomernaya approksimatsiya regulyarizuyuschikh algoritmov”, Zhurn. vychislit. matem. i mat. fiz., 19:1 (1979), 11–21 | MR | Zbl

[5] Danilin A. R., “Ob usloviyakh skhodimosti konechnomernykh approksimatsii metoda nevyazki”, Izv. vuzov. Matematika, 1980, no. 11, 38–40 | MR | Zbl

[6] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR

[7] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, Mir, M., 1977 | MR