@article{SJIM_2024_27_4_a9,
author = {M. V. Turbin and A. S. Ustiuzhaninova},
title = {Uniform attractors for the {Kelvin{\textemdash}Voigt} model taking into account memory along fluid motion trajectories},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {152--165},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/}
}
TY - JOUR AU - M. V. Turbin AU - A. S. Ustiuzhaninova TI - Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 152 EP - 165 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/ LA - ru ID - SJIM_2024_27_4_a9 ER -
%0 Journal Article %A M. V. Turbin %A A. S. Ustiuzhaninova %T Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 152-165 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/ %G ru %F SJIM_2024_27_4_a9
M. V. Turbin; A. S. Ustiuzhaninova. Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 152-165. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/
[1] A. S. Ustiuzhaninova and M. V. Turbin, “Trajectory and global attractors for a modified Kelvin—Voigt model”, J. Appl. Ind. Math., 15:1 (2021), 158–168 | DOI | DOI
[2] Zvyagin V., Vorotnikov D., Topological approximation methods for evolutionary problems of nonlinear hydrodinamics, Walter de Gruyter, Berlin, 2008 | DOI
[3] V. G. Zvyagin and S. K. Kondrat'ev, “Attractors of equations of non-Newtonian fluid dynamics”, Russ. Math. Surv., 69:5 (2014), 845–913 | DOI | DOI
[4] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-autonomous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI
[5] V. V. Chepyzhov, “Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics”, Russ. Mathe. Surv., 68:2 (2013), 349–382 | DOI | DOI
[6] Turbin M., Ustiuzhaninova A., “Existence of weak solution to initial-boundary value problem for finite order Kelvin—Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023), 54 | DOI
[7] Turbin M., Ustiuzhaninova A., “Trajectory and global attractors for the Kelvin—Voigt model taking into account memory along fluid trajectories”, Mathematics, 12:2 (2024), 266 | DOI
[8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Mathematical Monographs, 187, Am. Math. Soc., Providence, RI, 2000
[9] DiPerna R. J., Lions P.-L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI
[10] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. di Mat. Pura ed Appl., 146:1 (1986), 65–96 | DOI