Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 152-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the study of the qualitative behavior of solutions for the Kelvin—Voigt model taking into account memory along fluid motion trajectories. Namely, based on the theory of attractors of noninvariant trajectory spaces, for the model under consideration in the nonautonomous case the existence of a uniform trajectory and a uniform global attractor is proved under certain conditions on the coefficients.
Keywords: uniform attractor, trajectory space, Kelvin—Voigt model, memory along fluid trajectories, exponential estimate.
@article{SJIM_2024_27_4_a9,
     author = {M. V. Turbin and A. S. Ustiuzhaninova},
     title = {Uniform attractors for the {Kelvin{\textemdash}Voigt} model taking into account memory along fluid motion trajectories},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {152--165},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/}
}
TY  - JOUR
AU  - M. V. Turbin
AU  - A. S. Ustiuzhaninova
TI  - Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 152
EP  - 165
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/
LA  - ru
ID  - SJIM_2024_27_4_a9
ER  - 
%0 Journal Article
%A M. V. Turbin
%A A. S. Ustiuzhaninova
%T Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 152-165
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/
%G ru
%F SJIM_2024_27_4_a9
M. V. Turbin; A. S. Ustiuzhaninova. Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 152-165. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a9/

[1] A. S. Ustiuzhaninova and M. V. Turbin, “Trajectory and global attractors for a modified Kelvin—Voigt model”, J. Appl. Ind. Math., 15:1 (2021), 158–168 | DOI | DOI

[2] Zvyagin V., Vorotnikov D., Topological approximation methods for evolutionary problems of nonlinear hydrodinamics, Walter de Gruyter, Berlin, 2008 | DOI

[3] V. G. Zvyagin and S. K. Kondrat'ev, “Attractors of equations of non-Newtonian fluid dynamics”, Russ. Math. Surv., 69:5 (2014), 845–913 | DOI | DOI

[4] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-autonomous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI

[5] V. V. Chepyzhov, “Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics”, Russ. Mathe. Surv., 68:2 (2013), 349–382 | DOI | DOI

[6] Turbin M., Ustiuzhaninova A., “Existence of weak solution to initial-boundary value problem for finite order Kelvin—Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023), 54 | DOI

[7] Turbin M., Ustiuzhaninova A., “Trajectory and global attractors for the Kelvin—Voigt model taking into account memory along fluid trajectories”, Mathematics, 12:2 (2024), 266 | DOI

[8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Mathematical Monographs, 187, Am. Math. Soc., Providence, RI, 2000

[9] DiPerna R. J., Lions P.-L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI

[10] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. di Mat. Pura ed Appl., 146:1 (1986), 65–96 | DOI