Keywords: Bernstein—Nagumo type condition, viscosity solutions, a priori estimates.
@article{SJIM_2024_27_4_a8,
author = {Ar. S. Tersenov},
title = {On existence of viscosity solutions for evolution $p(x)${-Laplace} equation with one spatial variable},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {130--151},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a8/}
}
TY - JOUR AU - Ar. S. Tersenov TI - On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 130 EP - 151 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a8/ LA - ru ID - SJIM_2024_27_4_a8 ER -
Ar. S. Tersenov. On existence of viscosity solutions for evolution $p(x)$-Laplace equation with one spatial variable. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 130-151. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a8/
[1] Acerbi E., Mingione G., “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal., 164 (2002), 213–259 | DOI | MR
[2] Antontsev S. N., Rodrigues J. F., “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara, Sez. VII Sci. Mat., 52:1 (2006), 19–36 | DOI | MR
[3] Rajagopal K., Ružička M., “Mathematical modelling of electro-rheological fluids”, Contin. Mech. Thermodyn., 13 (2001), 59–78 | DOI
[4] Ružička M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000
[5] Aboulaicha R., Meskinea D., Souissia A., “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal., 164 (2002), 213–259 | DOI
[6] Chen Y., Levine S., Rao M., “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406 | DOI
[7] Antontsev S., Shmarev S., Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Press, Paris, 2015
[8] Arora R., Shmarev S., “Strong solutions of evolution equations with $p(x,t)$-Laplacian: Existence, global higher integrability of the gradients and second-order regularity”, J. Math. Anal. Appl., 493:1 (2020), 1–31
[9] Arora R., Shmarev S., “Existence and regularity results for a class of parabolic problems with double phase flux of variable growth”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. AMat, 117:34 (2023), 1–48
[10] Belloni M., Kawohl B., “The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to \infty$”, ESAIM: Control Optim. Calc. Variations, 10:1 (2004), 28–52 | DOI
[11] Birindelli I., Demengel F., “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators”, J. Elliptic Parabol. Equ., 2 (2016), 171–187 | DOI
[12] Demengel F., “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo $p$-Laplacian equation”, Adv. Differ. Equ., 21:3 (2016), 373–400
[13] Juutinen P., “On the definition of viscosity solutions for parabolic equations”, Proc. Amer. Math. Soc., 129:10 (2001), 2907–2911 | DOI
[14] Tersenov Ar. S., “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations”, Arch. Math., 45:1 (2009), 19–35
[15] Juutinen P., Lindqvist P., Manfredi J. J., “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation”, SIAM J. Math. Anal., 33:3 (2001), 699–717 | DOI
[16] Medina M., Ochoa P., “On viscosity and weak solutions for non-homogeneous $p$-Laplace equations”, Adv. Nonlinear Anal., 8:1 (2019), 468–481 | DOI
[17] Siltakoski J., “Equivalence of viscosity and weak solutions for a $p$-parabolic equation”, J. Evol. Equ., 21:4 (2021), 2047–2080 | DOI
[18] Dall'Aglio A., Giachetti D., Segura de Leon S., “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI
[19] Dall'Aglio A., De Cicco V., Giachetti D., Puel J.-P., “Existence of bounded solutions for nonlinear elliptic equations in unbounded domains”, NoDEA Nonlinear Differ. Equ. Appl., 11:4 (2004), 431–450 | DOI
[20] Nakao M., Chen C., “Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term”, J. Differ. Equ., 162:1 (2000), 224–250 | DOI
[21] Figueiredo D. G., Sanchez J., Ubilla P., “Quasilinear equations with dependence on the gradient”, Nonlinear Anal. Theory Meth. Appl., 71:10 (2009), 4862–4868 | DOI
[22] Iturriaga L., Lorca S., Sanchez J., “Existence and multiplicity results for the $p$-Laplacian with a $p$-gradient term”, NoDEA Nonlinear Differ. Equ. Appl., 15:6 (2008), 729–743 | DOI
[23] Li J., Yin J, Ke Y., “Existence of positive solutions for the $p$-Laplacian with $p$-gradient term”, J. Math. Anal. Appl., 383:1 (2011), 147–158 | DOI
[24] Ruiz D., “A priori estimates and existence of positive solutions for strongly nonlinear problems”, J. Differ. Equ., 199:1 (2004), 96–114 | DOI
[25] Zou H. H., “A priori estimates and existence for quasi-linear elliptic equations”, Calc. Var. Partial Differ. Equ., 33:4 (2008), 417–437 | DOI
[26] Dwivedi G., Gupta S., “An existence result for $p$-Laplace equation with gradient nonlinearity in $\mathbb{R}^N$”, Commun. Math., 30:1 (2022), 149–159
[27] Leonori T., Porretta A., Riey G., “Comparison principles for $p$-Laplace equations with lower order terms”, Ann. di Mat. Pura ed Appl., 196:3, 877–903 | DOI
[28] Bendahmane M., Karlsen K. H., “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22:3 (2005), 207–227 | DOI
[29] Fu Y., Pan N., “Existence of solutions for nonlinear parabolic problem with $p(x)$-growth”, J. Math. Anal. Appl., 362:2 (2010), 313–326 | DOI
[30] Zhan H., “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable”, Adv. Differ. Equ., 2019:27 (2019), 1–26
[31] Zhao J., “Existence and nonexistence of solutions for $u_t=div(|\nabla u|^{p-2}\nabla u)+f(\nabla u, u,x,t)$”, J. Math. Anal. Appl., 172:1 (1993), 130–146 | DOI
[32] Tersenov Al. S., Tersenov Ar. S., “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term”, J. Math. Anal. Appl., 480:1 (2019), 1–18 | DOI
[33] Ar. S. Tersenov, “Solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains”, Sib. Zh. Ind. Mat., 25:1 (2022), 131–146 (in Russian)
[34] Ar. S. Tersenov, “On the existence of viscous solutions of anisotropic parabolic equations with a variable anisotropy exponent”, Sib. Zh. Ind. Mat., 25:4 (2022), 206–220 (in Russian)
[35] Tersenov Al. S., Tersenov Ar. S., “The problem of Dirichlet for evolution one-dimensional $p$-Laplacian with nonlinear source”, J. Math. An. Appl., 340:2 (2008), 1109–1119 | DOI
[36] Tersenov Al. S., “The one-dimensional parabolic $p(x)$-Laplace equation”, Nonlinear Differ. Equ. Appl., 23:27 (2016), 1–11
[37] Wang L., “On the regularity theory of fully nonlinear parabolic equation I”, Comm. Pure. Appl. Math., 45 (1992), 27–76 | DOI
[38] Crandall M., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI
[39] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian)
[40] Gilding B. H., “Hølder continuity of solutions of parabolic equations”, J. London Math. Soc., 13:1 (1976), 103–106 | DOI
[41] Kruzhkov S. N., “Quasilinear parabolic equations and systems with two independent variables”, Trudy Sem. Petrovsk., 5 (1979), 217–272 (in Russian)