Numerical reconstruction of a two-dimensional vector field from momentum ray transforms
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 113-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithms for reconstructing a vector field from known longitudinal or transverse ray transforms of its moment are proposed and justified. The properties of several algorithms are studied depending on the degree of data discretization, the level and type of noise introduced into the data, the smoothness of the vector field, and the degree of connectivity of its support. Numerical simulations show good results of reconstructing vector fields from their momentum ray transforms.
Keywords: vector field, momentum ray transform, differential property of ray transforms, approximation, numerical simulation.
Mots-clés : reconstruction algorithm
@article{SJIM_2024_27_4_a7,
     author = {I. E. Svetov and E. Yu. Derevtsov and S. V. Maltseva and A. P. Polyakova},
     title = {Numerical reconstruction of a two-dimensional vector field from momentum ray transforms},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {113--129},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a7/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - E. Yu. Derevtsov
AU  - S. V. Maltseva
AU  - A. P. Polyakova
TI  - Numerical reconstruction of a two-dimensional vector field from momentum ray transforms
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 113
EP  - 129
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a7/
LA  - ru
ID  - SJIM_2024_27_4_a7
ER  - 
%0 Journal Article
%A I. E. Svetov
%A E. Yu. Derevtsov
%A S. V. Maltseva
%A A. P. Polyakova
%T Numerical reconstruction of a two-dimensional vector field from momentum ray transforms
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 113-129
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a7/
%G ru
%F SJIM_2024_27_4_a7
I. E. Svetov; E. Yu. Derevtsov; S. V. Maltseva; A. P. Polyakova. Numerical reconstruction of a two-dimensional vector field from momentum ray transforms. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 113-129. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a7/

[1] Radon J., “Über die Bestimmung von Funktionen durch ihre Integrabwerte längs gewisser Mannigfaltigkeiten”, Ber. Säch. Akad. Wiss., 69 (1917), 262–277

[2] Deans S., The Radon Transform and Some of its Applications, Wiley, N. Y., 1983 | MR

[3] Sharafutdinov V. A., Integral Geometry of Tensor Fields, VSP, Urtecht, 1994 | MR

[4] Wernick M. N., Aarsvold J. N., Emission tomography: The fundamentals of PET and SPECT, Elsevier, London, 2004

[5] Derevtsov E. Yu., Svetov I. E., “Tomography of tensor fields in the plane”, Eurasian J. Math. Comput. Appl., 3:2 (2015), 24–68

[6] Derevtsov E. Y., Volkov Y. S., Schuster T., “Generalized attenuated ray transforms and their integral angular moments”, Appl. Math. Comput., 409:15 (2021), 125494 | DOI | MR

[7] Krishnan V. P., Manna R., Sahoo S. K., Sharafutdinov V. A., “Momentum ray transforms”, Inverse Probl. Imaging, 13:3 (2019), 679–701 | DOI | MR

[8] Abhishek A., Mishra R. K., “Support theorems and an injectivity result for integral moments of a symmetric $m$-tensor field”, J. Fourier Anal. Appl., 25:4 (2019), 1487–1512 | DOI | MR

[9] Mishra R. K., “Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in $\mathbb{R}^{n}$”, J. Inverse Ill-Posed Probl., 28:2 (2020), 173–184 | DOI | MR

[10] Mishra R. K., Sahoo S. K., “Injectivity and range description of first $(k+1)$ integral moment transforms over $m$-tensor fields in $\mathbb{R}^{n}$”, SIAM J. Math. Anal., 53:1 (2021), 253–278 | DOI | MR

[11] Bhattacharyya S., Krishnan V. P., Sahoo S. K., “Momentum Ray Transforms and a Partial Data Inverse Problem for a Polyharmonic Operator”, SIAM J. Math. Anal., 55:4 (2023), 4000–4038 | DOI | MR

[12] Denisiuk A., “Iterative inversion of the tensor momentum x-ray transform”, Inverse Probl., 39:10 (2023), 105002 | DOI | MR

[13] Omogbhe D., Sadiq S. K., “On the X-ray transform of planar symmetric tensors”, J. Inverse Ill-Posed Probl., 32:3 (2023), 431–452 | DOI | MR

[14] E. Yu. Derevtsov, “Momentum ray transforms of planar tensor fields”, J. Appl. Ind. Math., 17:3 (2023), 521–534 | DOI | MR

[15] Derevtsov E. Y., Efimov A. V., Louis A. K., Schuster T., “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Probl., 19:4–5 (2011), 689–715 | DOI | MR

[16] I. E. Svetov and A. P. Polyakova, “Comparison of two algorithms for numerical solution of the problem of two-dimensional vector tomography”, Sib. Elektron. Mat. Izv., 10:1 (2013), 90–108 (in Russian) | MR

[17] Polyakova A. P., Svetov I. E., “A numerical solution of the dynamic vector tomography problem using the truncated singular value decomposition method”, J. Inverse Ill-Posed Probl., 32:1 (2024), 145–160 | DOI | MR

[18] Kunyansky L., McDugald E., Shearer B., “Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography”, Inverse Probl., 39:6 (2023), 065014 | DOI | MR