Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 99-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A difference system of the Lotka—Volterra type is considered. It is assumed that this system can operate both in some program and perturbed modes. The restrictions on the time of the system's stay in these modes, providing the desired dynamical behavior, are investigated. In particular, the conditions of the ultimate boundedness of solutions and the permanence of the system are obtained. The direct Lyapunov method is used, and different Lyapunov functions are constructed in different parts of the phase space. The sizes of the domain of permissible initial values of solutions and the domain of the ultimate bound of solutions corresponding to the required dynamics of the system are estimated. Constraints are set on the size of the digitization step of the system.
Keywords: Lotka—Volterra systems, switching, ultimate boundedness of solutions
Mots-clés : permanence.
@article{SJIM_2024_27_4_a6,
     author = {A. V. Platonov},
     title = {Analysis of the dynamics of solutions for hybrid difference {Lotka{\textemdash}Volterra} systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--112},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/}
}
TY  - JOUR
AU  - A. V. Platonov
TI  - Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 99
EP  - 112
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/
LA  - ru
ID  - SJIM_2024_27_4_a6
ER  - 
%0 Journal Article
%A A. V. Platonov
%T Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 99-112
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/
%G ru
%F SJIM_2024_27_4_a6
A. V. Platonov. Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 99-112. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/

[1] Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998 | MR

[2] Kazkurewicz E., Bhaya A., Matrix Diagonal Stability in Systems and Computation, Birkhauser, Boston, 1999 | MR

[3] Yu. A. Pykh, Equilibrium and Stability in Population Dynamics Models, Nauka, M., 1983 (in Russian)

[4] Hofbauer J., Hutson V., Jansen W., “Coexistence for systems governed by difference equations of Lotka—Volterra type”, J. Math. Biol., 25:5 (1987), 553–570 | DOI | MR

[5] Chen F. D., “Permanence and global attractivity of a discrete multispecies Lotka—Volterra competition predator-prey systems”, Appl. Math. Comput., 182:1 (2006), 3–12 | DOI | MR

[6] Lu Z., Wang W., “Permanence and global attractivity for Lotka—Volterra difference systems”, J. Math. Biol., 39:3 (1999), 269–282 | DOI | MR

[7] N. V. Pertsev, B. Yu. Pichugin, and K. K. Loginov, “Statistical modeling of population dynamics developing under the influence of toxic substances”, Sib. Zh. Ind. Mat., 14:2 (2011), 84–94 (in Russian) | MR

[8] Capone F., De Luca R., Rionero S., “On the stability of non-autonomous perturbed Lotka—Volterra models”, Appl. Math. Comput., 219:12 (2013), 6868–6881 | DOI | MR

[9] Li L., Wang Zh.-J., “Global stability of periodic solutions for a discrete predator-prey system with functional response”, Nonlinear Dynamics, 72:3 (2013), 507–516 | DOI | MR

[10] Chakraborty K., Haldar S., Kar T. K., “Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure”, Nonlinear Dyn., 73:3 (2013), 1307–1325 | DOI | MR

[11] Balbus J., “Permanence in nonautonomous competitive systems with nonlocal dispersal”, J. Math. Anal. Appl., 447:1 (2017), 564–578 | DOI | MR

[12] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka—Volterra population dynamics with jumps”, Nonlinear Anal., 74:17 (2011), 6601–6616 | DOI | MR

[13] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous N-species Lotka—Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377:1 (2011), 145–160 | DOI | MR

[14] Liberzon D., Switching in Systems and Control, Birkhauser, Boston, 2003 | MR

[15] Zhai G., Hu B., Yasuda K., Michel A. N., “Disturbance attention properties of time-controlled switched systems”, J. Franklin Inst., 338:7 (2001), 765–779 | DOI | MR

[16] Zu L., Jiang D., O'Regan D., “Conditions for persistence and ergodicity of a stochastic Lotka—Volterra predator-prey model with regime switching”, Commun. Nonlinear Sci. Numer. Simul., 29:1–3 (2015), 1–11 | DOI | MR

[17] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zhang L., “Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems”, J. Differ. Equ. Appl., 18:9 (2012), 1545–1561 | DOI | MR

[18] Platonov A. V., “On the global asymptotic stability and ultimate boundedness for a class of nonlinear switched systems”, Nonlinear Dyn., 92:4 (2018), 1555–1565 | DOI | MR

[19] Wang S., Wu W., Lu J., She Zh., “Inner-approximating domains of attraction for discrete-time switched systems via multi-step multiple Lyapunov-like functions”, Nonlinear Anal. Hybrid Syst., 40 (2021), 100993 | DOI | MR

[20] Platonov A. V., “Analysis of the dynamical behavior of solutions for a class of hybrid generalized Lotka—Volterra models”, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107068 | DOI | MR