Mots-clés : permanence.
@article{SJIM_2024_27_4_a6,
author = {A. V. Platonov},
title = {Analysis of the dynamics of solutions for hybrid difference {Lotka{\textemdash}Volterra} systems},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {99--112},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/}
}
A. V. Platonov. Analysis of the dynamics of solutions for hybrid difference Lotka—Volterra systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 99-112. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a6/
[1] Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998 | MR
[2] Kazkurewicz E., Bhaya A., Matrix Diagonal Stability in Systems and Computation, Birkhauser, Boston, 1999 | MR
[3] Yu. A. Pykh, Equilibrium and Stability in Population Dynamics Models, Nauka, M., 1983 (in Russian)
[4] Hofbauer J., Hutson V., Jansen W., “Coexistence for systems governed by difference equations of Lotka—Volterra type”, J. Math. Biol., 25:5 (1987), 553–570 | DOI | MR
[5] Chen F. D., “Permanence and global attractivity of a discrete multispecies Lotka—Volterra competition predator-prey systems”, Appl. Math. Comput., 182:1 (2006), 3–12 | DOI | MR
[6] Lu Z., Wang W., “Permanence and global attractivity for Lotka—Volterra difference systems”, J. Math. Biol., 39:3 (1999), 269–282 | DOI | MR
[7] N. V. Pertsev, B. Yu. Pichugin, and K. K. Loginov, “Statistical modeling of population dynamics developing under the influence of toxic substances”, Sib. Zh. Ind. Mat., 14:2 (2011), 84–94 (in Russian) | MR
[8] Capone F., De Luca R., Rionero S., “On the stability of non-autonomous perturbed Lotka—Volterra models”, Appl. Math. Comput., 219:12 (2013), 6868–6881 | DOI | MR
[9] Li L., Wang Zh.-J., “Global stability of periodic solutions for a discrete predator-prey system with functional response”, Nonlinear Dynamics, 72:3 (2013), 507–516 | DOI | MR
[10] Chakraborty K., Haldar S., Kar T. K., “Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure”, Nonlinear Dyn., 73:3 (2013), 1307–1325 | DOI | MR
[11] Balbus J., “Permanence in nonautonomous competitive systems with nonlocal dispersal”, J. Math. Anal. Appl., 447:1 (2017), 564–578 | DOI | MR
[12] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka—Volterra population dynamics with jumps”, Nonlinear Anal., 74:17 (2011), 6601–6616 | DOI | MR
[13] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous N-species Lotka—Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377:1 (2011), 145–160 | DOI | MR
[14] Liberzon D., Switching in Systems and Control, Birkhauser, Boston, 2003 | MR
[15] Zhai G., Hu B., Yasuda K., Michel A. N., “Disturbance attention properties of time-controlled switched systems”, J. Franklin Inst., 338:7 (2001), 765–779 | DOI | MR
[16] Zu L., Jiang D., O'Regan D., “Conditions for persistence and ergodicity of a stochastic Lotka—Volterra predator-prey model with regime switching”, Commun. Nonlinear Sci. Numer. Simul., 29:1–3 (2015), 1–11 | DOI | MR
[17] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zhang L., “Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems”, J. Differ. Equ. Appl., 18:9 (2012), 1545–1561 | DOI | MR
[18] Platonov A. V., “On the global asymptotic stability and ultimate boundedness for a class of nonlinear switched systems”, Nonlinear Dyn., 92:4 (2018), 1555–1565 | DOI | MR
[19] Wang S., Wu W., Lu J., She Zh., “Inner-approximating domains of attraction for discrete-time switched systems via multi-step multiple Lyapunov-like functions”, Nonlinear Anal. Hybrid Syst., 40 (2021), 100993 | DOI | MR
[20] Platonov A. V., “Analysis of the dynamical behavior of solutions for a class of hybrid generalized Lotka—Volterra models”, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107068 | DOI | MR