Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 68-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a junction problem for Timoshenko elastic inclusions placed in an elastic body with a crack. It is assumed that the crack crosses the thin inclusion at some point. This point is a mutual contact point. Inequality-type boundary conditions are imposed at the point of contact and on the crack edges to prevent mutual penetration between inclusion parts and crack edges, respectively. Existence and uniqueness theorems are established. Differential formulation in the form of a boundary value problem that contains junction boundary conditions is presented.
Keywords: junction conditions, nonlinear boundary conditions, Timoshenko inclusion, crack, variational inequality.
@article{SJIM_2024_27_4_a4,
     author = {N. A. Nikolaeva},
     title = {Junction problem for elastic {Timoshenko} inclusions in elastic bodies with a crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {68--83},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/}
}
TY  - JOUR
AU  - N. A. Nikolaeva
TI  - Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 68
EP  - 83
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/
LA  - ru
ID  - SJIM_2024_27_4_a4
ER  - 
%0 Journal Article
%A N. A. Nikolaeva
%T Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 68-83
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/
%G ru
%F SJIM_2024_27_4_a4
N. A. Nikolaeva. Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 68-83. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/

[1] N. F. Morozov, Mathematical Issues of Crack Theory, Nauka, M., 1984 (in Russian)

[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton—Boston, 2000

[3] A. M. Khludnev, Problems of Elasticity Theory in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[4] H. Itou, G. Leugering, and A. M. Khludnev, “Timoshenko thin inclusions in an elastic body with possible delamination”, Dokl. Phys., 59:9 (2014), 401–404

[5] Khludnev A. M., Leugering G., “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR

[6] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR

[7] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, ZAMM-Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[8] Khludnev A. M., Popova T. S., “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333 | DOI | MR

[9] Rudoy E. M., Lazarev N. P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334:17 (2018), 18–26 | DOI | MR

[10] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 1–14 | DOI | MR

[11] Khludnev A. M., Popova T. S., “Junction problem for Euler—Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR

[12] A. M. Khludnev and T. S. Popova, “The problem of conjugation of the elastic inclusion of Timoshenko and a semi-rigid inclusion”, Mat. Zam. SVFU, 25:1 (2018), 73–89 (in Russian)

[13] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | DOI | MR

[14] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR

[15] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 10:2 (2016), 264–276 | DOI | MR

[16] N. P. Lazarev, “The problem of equilibrium of the Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mech. Komp'yut. Nauki, 1 (2014), 32–45 (in Russian)

[17] N. A. Nikolaeva, “Kirchhoff—Love plate with a flat rigid inclusion”, Chelyab. Fiz.-Mat. Zh., 8:1 (2023), 29–46 (in Russian) | DOI

[18] I. V. Fankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Ind. Math., 10:3 (2016), 333–340 | DOI | MR

[19] N. A. Nikolaeva, “About integration of the crack with thin inclusions in elastik bodies”, J. Appl. Ind. Math., 22:4 (2019), 68–80 | DOI | MR

[20] Faella L., Khludnev A. M., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Methods Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR

[21] A. M. Khludnev and T. S. Popova, “On the hierarchy of thin inclusions in elastic bodies”, Mat. Zam. SVFU, 23:1 (2016), 87–107 (in Russian)

[22] Khludnev A. M., “Equilibrium of an elastic body with closely spaced thin inclusions”, Comp. Math. Math. Phys., 58:10 (2018), 1660–1672 | DOI | MR

[23] Khludnev A. M., Leugering G., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Sys., 2:1 (2014), 1–21 | DOI | MR

[24] T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12:4 (2018), 313–324 | DOI | MR

[25] Khludnev A. M., “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 24:9 (2018), 2742–2753 | DOI | MR

[26] A. I. Furtsev, “On the contact of a thin obstacle and a plate containing a thin inclusion”, Sib. Zh. Chistoi Prikl. Mat., 17:4 (2017), 94–111 | DOI | MR

[27] N. A. Nikolaeva, “Equilibrium problems for elastic body with a crack and thin conjugated inclusions”, Dal'nevost. Mat. Zh., 24:1 (2024), 73–95 (in Russian) | DOI | MR

[28] Khludnev A. M., Popova T. S., “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Comp. Math. Appl., 77:1 (2019), 253–262 | DOI | MR

[29] A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equations, Nauka, M., 1976 (in Russian)

[30] Boerquin F., Ciarlet P. G., “Modeling and justification of eigenvalue problems for junctions between elastic structures”, J. Funct. Anal., 87:2 (1989), 392–427 | DOI | MR

[31] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pures Appl., 68:3 (1989), 365–397 | MR

[32] T. Durante, G. Cardone, and S. A. Nasarov, “Modeling junction of plates and beams by means of self-adjoint extensions”, J. Control. Vestn. St. Petersb. Univ. Math., 42:2 (2009), 67–75 | DOI | MR

[33] Gaudiello A., Monneau R., Mossino J., Murat F., Sili A., “Junctions of elastic plates and beams”, ESAIM Contr. Optim. CA, 13:3 (2007), 419–457 | DOI | MR

[34] Yu. A. Bogan, “On the conjugation conditions of A. A. Samarskii and V. B. Andreev in the theory of elastic beams”, Mat. Zam., 92:5 (2012), 662–669 (in Russian) | DOI | MR

[35] Yu. A. Bogan, “Averaging of a nonuniform elastic beam with the connection of elements by a hinge of finite rigidity”, Sib. Zh. Ind. Mat., 1:2 (1998), 67–72 (in Russian) | MR

[36] L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Stashchuk, Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body, Nauk. Dumka, Kiev, 1983 (in Russian)

[37] E. V. Mochalov and V. V. Silvestrov, “Problem of interaction of thin rigid needle-shaped inclusions located between different elastic materials”, Mech. Solids, 46:5 (2011), 739–754 | DOI

[38] S. M. Mkhitaryan, “On the stress state of an elastic infinite plate with a finite crack interacting with an absolutely rigid thin inclusion”, Dokl. NAN RA, 118:1 (2018), 39–48 (in Russian) | MR

[39] E. I. Grigolyuk and I. T. Selezov, Results of Science and Technology, VINITI, M., 1973 (in Russian)