@article{SJIM_2024_27_4_a4,
author = {N. A. Nikolaeva},
title = {Junction problem for elastic {Timoshenko} inclusions in elastic bodies with a crack},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {68--83},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/}
}
N. A. Nikolaeva. Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 68-83. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a4/
[1] N. F. Morozov, Mathematical Issues of Crack Theory, Nauka, M., 1984 (in Russian)
[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton—Boston, 2000
[3] A. M. Khludnev, Problems of Elasticity Theory in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[4] H. Itou, G. Leugering, and A. M. Khludnev, “Timoshenko thin inclusions in an elastic body with possible delamination”, Dokl. Phys., 59:9 (2014), 401–404
[5] Khludnev A. M., Leugering G., “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR
[6] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR
[7] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, ZAMM-Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[8] Khludnev A. M., Popova T. S., “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333 | DOI | MR
[9] Rudoy E. M., Lazarev N. P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334:17 (2018), 18–26 | DOI | MR
[10] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 1–14 | DOI | MR
[11] Khludnev A. M., Popova T. S., “Junction problem for Euler—Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR
[12] A. M. Khludnev and T. S. Popova, “The problem of conjugation of the elastic inclusion of Timoshenko and a semi-rigid inclusion”, Mat. Zam. SVFU, 25:1 (2018), 73–89 (in Russian)
[13] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | DOI | MR
[14] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR
[15] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 10:2 (2016), 264–276 | DOI | MR
[16] N. P. Lazarev, “The problem of equilibrium of the Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mech. Komp'yut. Nauki, 1 (2014), 32–45 (in Russian)
[17] N. A. Nikolaeva, “Kirchhoff—Love plate with a flat rigid inclusion”, Chelyab. Fiz.-Mat. Zh., 8:1 (2023), 29–46 (in Russian) | DOI
[18] I. V. Fankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Ind. Math., 10:3 (2016), 333–340 | DOI | MR
[19] N. A. Nikolaeva, “About integration of the crack with thin inclusions in elastik bodies”, J. Appl. Ind. Math., 22:4 (2019), 68–80 | DOI | MR
[20] Faella L., Khludnev A. M., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Methods Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR
[21] A. M. Khludnev and T. S. Popova, “On the hierarchy of thin inclusions in elastic bodies”, Mat. Zam. SVFU, 23:1 (2016), 87–107 (in Russian)
[22] Khludnev A. M., “Equilibrium of an elastic body with closely spaced thin inclusions”, Comp. Math. Math. Phys., 58:10 (2018), 1660–1672 | DOI | MR
[23] Khludnev A. M., Leugering G., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Sys., 2:1 (2014), 1–21 | DOI | MR
[24] T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12:4 (2018), 313–324 | DOI | MR
[25] Khludnev A. M., “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 24:9 (2018), 2742–2753 | DOI | MR
[26] A. I. Furtsev, “On the contact of a thin obstacle and a plate containing a thin inclusion”, Sib. Zh. Chistoi Prikl. Mat., 17:4 (2017), 94–111 | DOI | MR
[27] N. A. Nikolaeva, “Equilibrium problems for elastic body with a crack and thin conjugated inclusions”, Dal'nevost. Mat. Zh., 24:1 (2024), 73–95 (in Russian) | DOI | MR
[28] Khludnev A. M., Popova T. S., “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Comp. Math. Appl., 77:1 (2019), 253–262 | DOI | MR
[29] A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equations, Nauka, M., 1976 (in Russian)
[30] Boerquin F., Ciarlet P. G., “Modeling and justification of eigenvalue problems for junctions between elastic structures”, J. Funct. Anal., 87:2 (1989), 392–427 | DOI | MR
[31] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pures Appl., 68:3 (1989), 365–397 | MR
[32] T. Durante, G. Cardone, and S. A. Nasarov, “Modeling junction of plates and beams by means of self-adjoint extensions”, J. Control. Vestn. St. Petersb. Univ. Math., 42:2 (2009), 67–75 | DOI | MR
[33] Gaudiello A., Monneau R., Mossino J., Murat F., Sili A., “Junctions of elastic plates and beams”, ESAIM Contr. Optim. CA, 13:3 (2007), 419–457 | DOI | MR
[34] Yu. A. Bogan, “On the conjugation conditions of A. A. Samarskii and V. B. Andreev in the theory of elastic beams”, Mat. Zam., 92:5 (2012), 662–669 (in Russian) | DOI | MR
[35] Yu. A. Bogan, “Averaging of a nonuniform elastic beam with the connection of elements by a hinge of finite rigidity”, Sib. Zh. Ind. Mat., 1:2 (1998), 67–72 (in Russian) | MR
[36] L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Stashchuk, Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body, Nauk. Dumka, Kiev, 1983 (in Russian)
[37] E. V. Mochalov and V. V. Silvestrov, “Problem of interaction of thin rigid needle-shaped inclusions located between different elastic materials”, Mech. Solids, 46:5 (2011), 739–754 | DOI
[38] S. M. Mkhitaryan, “On the stress state of an elastic infinite plate with a finite crack interacting with an absolutely rigid thin inclusion”, Dokl. NAN RA, 118:1 (2018), 39–48 (in Russian) | MR
[39] E. I. Grigolyuk and I. T. Selezov, Results of Science and Technology, VINITI, M., 1973 (in Russian)