Mathematical modeling of carbon dioxide injection into a reservoir with methane and water taking into account the formation of carbon dioxide hydrate
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 49-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An increase in the concentration of carbon dioxide in the atmosphere caused by the combustion of fuels has a negative impact on the current biosphere of the Earth. One way to get rid of excess carbon dioxide in the atmosphere is to capture and store it. Various methods for long-term storage of carbon dioxide are proposed, including in various geological formations in gas hydrate form, since gas hydrates have a number of unique properties, for example, it is possible to stably store a sufficiently large amount of gas in a small volume at a relatively low pressure. One of the objects for creating underground carbon dioxide storage facilities are depleted natural gas deposits, since they are well studied, the characteristics of the deposits, their geometric dimensions are known, and there are drilled wells. To study the patterns of the formation process of an underground gas hydrate carbon dioxide storage, the article presents a mathematical model of the process of carbon dioxide injection into a zonally heterogeneous porous reservoir, initially saturated with methane and water, accompanied by the formation of gas hydrate. Unlike previous works, the mathematical model additionally takes into account a number of factors: the solubility of carbon dioxide in water, zonal heterogeneity of a reservoir, heat exchange of the reservoir with the surrounding rocks impermeable to matter, filtration of water and gas. Numerical solutions of the problem were constructed to describe the distribution of parameters (pressure, temperature, carbon dioxide hydrate saturation) in the reservoir.
Keywords: mathematical model, carbon dioxide burial, gas hydrate formation.
Mots-clés : multiphase filtration
@article{SJIM_2024_27_4_a3,
     author = {N. G. Musakaev and S. L. Borodin},
     title = {Mathematical modeling of carbon dioxide injection into a reservoir with methane and water taking into account the formation of carbon dioxide hydrate},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {49--67},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a3/}
}
TY  - JOUR
AU  - N. G. Musakaev
AU  - S. L. Borodin
TI  - Mathematical modeling of carbon dioxide injection into a reservoir with methane and water taking into account the formation of carbon dioxide hydrate
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 49
EP  - 67
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a3/
LA  - ru
ID  - SJIM_2024_27_4_a3
ER  - 
%0 Journal Article
%A N. G. Musakaev
%A S. L. Borodin
%T Mathematical modeling of carbon dioxide injection into a reservoir with methane and water taking into account the formation of carbon dioxide hydrate
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 49-67
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a3/
%G ru
%F SJIM_2024_27_4_a3
N. G. Musakaev; S. L. Borodin. Mathematical modeling of carbon dioxide injection into a reservoir with methane and water taking into account the formation of carbon dioxide hydrate. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 49-67. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a3/

[1] Misyura S., Strizhak P., Meleshkin A., Morozov V., Gaidukova O., Shlegel N., Shkola M., “A review of gas capture and liquid separation technologies by CO$_2$ gas hydrate”, Energies, 16:8 (2023), 3318 | DOI

[2] Measurements from the Mauna Loa Weather Observatory, ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt

[3] Feyzi V., Mohebbi V., “Experimental study and modeling of the kinetics of carbon-dioxide hydrate formation and dissociation: A mass transfer limited kinetic approach”, J. Nat. Gas. Sci. Eng., 77 (2020), 103273 | DOI

[4] Cao X., Wang H., Yang K., Wu S., Chen Q., Bian J., “Hydrate-based CO$_2$ sequestration technology: Feasibilities, mechanisms, influencing factors, and applications”, J. Nat. Gas. Sci. Eng., 219 (2022), 111121 | DOI

[5] Muhammad H. A., Lee G., Cho J., Bhatti U. H., Baik Y-J., Lee B., “Design and optimization of CO$_2$ pressurization system integrated with a supercritical CO$_2$ power cycle for the CO$_2$ capture and storage system”, Energy Convers. Manag., 195 (2019), 609–619 | DOI

[6] Chang R., Choi D., Kim M. H., Park Y., “Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO$_2$ mineralization”, ACS Sustain. Chem. Eng., 5:2 (2016), 1659–1667 | DOI | MR

[7] A. G. Zavodovskii, M. Sh. Madygulov, and A. M. Reshetnikov, “Kinetics of Freon-12 gas hydrate growth during sample thermal cycling”, Kriosfera Zemli, 21:5 (2017), 55–62 (in Russian) | DOI

[8] Mac Dowell N., Fennell P. S., Shah N., Maitland G. C., “The role of CO$_2$ capture and utilization in mitigating climate change”, Nat. Clim. Chang., 7 (2017), 243–249 | DOI

[9] Massah M., Sun D., Sharifi H., Englezos P., “Demonstration of gas-hydrate assisted carbon dioxide storage through horizontal injection in lab-scale reservoir”, J. Chem. Thermodyn., 117 (2018), 106–112 | DOI

[10] Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P., “A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates”, Appl. Energy, 216 (2018), 262–285 | DOI

[11] Kim S., Santamarina J. C., “Engineered CO$_2$ injection: The use of surfactants for enhanced sweep efficiency”, Int. J. Greenh. Gas Control, 20 (2014), 324–332 | DOI

[12] Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., “Geological CO$_2$ capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition”, ACS Sustain. Chem. Eng., 7:5 (2019), 5338–5345 | DOI

[13] V. A. Istomin and V. S. Yakushev, Gas Hydrates in Natural Conditions, Nedra, M., 1992 (in Russian)

[14] Chatti I., Delahaye A., Fournaison L., Petitet J-P., “Benefits and drawbacks of clathrate hydrates: A review of their areas of interest”, Energy Convers. Manag., 46:9-10 (2005), 1333–1343 | DOI

[15] V. I. Bogoyavlenskii, A. S. Yanchevskaya, I. V. Bogoyavlenskii, and A. V. Kishankov, “Gas hydrates in the waters of the circumarctic region”, Arktika: Ekol. Ekon., 3:31 (2018), 42–55 (in Russian) | DOI

[16] G. G. Tsypkin, “Formation of hydrate in injection of liquid carbon dioxide into a reservoir saturated with methane and water”, Fluid Dyn., 51:5 (2016), 672–679 | DOI | DOI | MR

[17] Pandey Sh., Solms N., “Hydrate stability and methane recovery from gas hydrate through CH$_4$-CO$_2$ replacement in different mass transfer scenarios”, Energies, 12:12 (2019), 2309 | DOI

[18] Khasanov M. K., Rafikova G. R., Musakaev N. G., “Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate”, Energies, 13:2 (2020), 440 | DOI

[19] Goel N., “In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues”, J. Pet. Sci. Eng., 51:3–4 (2006), 169–184 | DOI

[20] Ndlovu P., Babaee S., Naidoo P., “Review on CH$_4$-CO$_2$ replacement for CO$_2$ sequestration and CH$_4$/CO$_2$ hydrate formation in porous media”, Fuel, 320 (2022), 123795 | DOI

[21] Espinoza D. N., Santamarina J. C., “P-wave monitoring of hydrate-bearing sand during CH$_4$-CO$_2$ replacement”, Int. J. Greenh. Gas Control, 5:4 (2011), 1031–1038 | DOI

[22] Yuan Q., Sun C.-Y., Liu B., Wang X., Ma Z.-W., Ma Q.-L., Yang L.-Y., Chen G.-J., Li Q.-P., Li S., Zhang K., “Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO$_2$”, Energy Convers. Manag., 67 (2013), 257–264 | DOI

[23] G. G. Tsypkin, “Mathematical model of conversion of CH$_4$ hydrate to CO$_2$ hydrate at high rates of carbon dioxide injection into a reservoir”, Dokl. Phys., 66:1 (2021), 30–33 | DOI

[24] V. Sh. Shagapov, G. R. Rafikova, and M. K. Khasanov, “On the theory of formation of gas hydrate in partially water-saturated porous medium when injecting methane”, High Temperature, 54:6 (2016), 858–866 | DOI

[25] Bondarev E. A., Rozhin I. I., Popov V. V., Argunova K. K., “Underground storage of natural gas in hydrate state: Primary injection stage”, J. Eng. Thermophys., 27 (2018), 221–231 | DOI

[26] V. Sh. Shagapov, A. S. Chiglintseva, A. A. Rusinov, and M. K. Khasanov, “To the theory of the process of cold gas injection into a snow massif, accompanied by hydrate formation”, Inzh.-Fiz. Zh., 91:6 (2018), 1605–1616 (in Russian) | DOI

[27] Musakaev N. G., Khasanov M. K., “Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs”, Mathematics, 8:1 (2020), 36 | DOI

[28] Khasanov M. K., Musakaev N. G., Stolpovsky M. V., Kildibaeva S. R., “Mathematical model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate”, Mathematics, 8:9 (2020), 1482 | DOI | MR

[29] G. I. Barenblatt, L. I. Lobkovsky, and R. I. Nigmatulin, “A mathematical model of gas outflow from gas-saturated ice and gas hydrates”, Dokl. Earth Sci., 470:2 (2016), 1046–1049 | DOI

[30] Roostaie M., Leonenko Y., “Analytical modeling of methane hydrate dissociation under thermal stimulation”, J. Pet. Sci. Eng., 184 (2020), 106505 | DOI

[31] Borodin S. L., Musakaev N. G., Belskikh D. S., “Mathematical modeling of a non-isothermal flow in a porous medium considering gas hydrate decomposition: A review”, Mathematics, 10:24 (2022), 4674 | DOI

[32] K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Hydromechanics, Nedra, M., 1993 (in Russian)

[33] Abu-Nab A. K., Koldoba A. V., Koldoba E. V., Poveshchenko Yu. A., Podryga V. O., Rahimly P. I., Bakeer A. E., “On the theory of methane hydrate decomposition in a one-dimensional model in porous sediments: Numerical study”, Mathematics, 11:2 (2023), 341 | DOI | MR

[34] Nigmatulin R. I., Dynamics of Multiphase Media, Hemisphere Publ. Corp., Washington, 1991

[35] S. L. Borodin and D. S. Bel'skikh, “Mathematical modeling of equilibrium complete substitution of methane with carbon dioxide in a gas hydrate reservoir at negative temperatures”, Vestn. TGU. Fiz.- Mat. Model. Neft' Gaz Energ., 6:2(22) (2020), 63–80 (in Russian) | DOI | MR

[36] V. V. Popov, “Numerical study of the decomposition of ideal gas hydrates in a reservoir with decreasing pressure and simultaneous heating”, Mat. Zam. SVFU, 26:4 (2019), 83–97 (in Russian) | DOI

[37] Konno Y., Masuda Y., Hariguchi Y., Kurihara M., Ouchi H., “Key factors for depressurization-induced gas production from oceanic methane hydrates”, Energy Fuels, 24:3 (2010), 1736–1744 | DOI

[38] Sakamoto Y., Komai T., Miyazaki K., Tenma N., Yamaguchi T., Zyvoloski G., “Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir”, J. Thermodyn., 2010, 452326 | DOI

[39] Liang W., Wang J., Li P., “Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model”, Appl. Energy, 322 (2022), 119434 | DOI

[40] Zhang P., Liu B., Hu L., Meegoda J. N., “Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates”, Comput. Geotech., 145 (2022), 104671 | DOI

[41] V. V. Latonov and G. R. Gurevich, “Calculation of the compressibility coefficient of natural gas”, Gaz. Prom-st, 1969, no. 2, 7–9 (in Russian)

[42] V. P. Voronov, E. E. Gorodetskii, B. A. Grigoriev, and A. R. Muratov, “Experimental study of the process of methane substitution in gas hydrate with carbon dioxide”, Nauchno-Tekh. Sb. Vesti Gaz Nauki, 2:7 (2011), 235–248 (in Russian)

[43] V. I. Kosarev, 12 Lectures on Computational Mathematics (Introductory Course), Fizmatkniga, M., 2013 (in Russian)

[44] Musakaev N. G., Borodin S. L., “To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide”, MATEC Web Conf., 115 (2017), 05002 | DOI

[45] N. G. Musakaev and M. K. Khasanov, “Mathematical modeling of the process of gas hydrate formation during injection of carbon dioxide into a formation saturated with methane and ice”, Kriosf. Zemli, 20:3 (2016), 63–70 (in Russian) | DOI