@article{SJIM_2024_27_4_a2,
author = {A. N. Kirillov and A. M. Sazonov},
title = {A model of hybrid population dynamics with refuge-regime: regularization and limit sets},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {34--48},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/}
}
TY - JOUR AU - A. N. Kirillov AU - A. M. Sazonov TI - A model of hybrid population dynamics with refuge-regime: regularization and limit sets JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 34 EP - 48 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/ LA - ru ID - SJIM_2024_27_4_a2 ER -
A. N. Kirillov; A. M. Sazonov. A model of hybrid population dynamics with refuge-regime: regularization and limit sets. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 34-48. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/
[1] Chen X., Huang L., “A Filippov system describing the effect of prey refuge use on a ratio-dependent predator—prey model”, J. Math. Anal. Appl., 428:2 (2015), 817–837 | DOI | MR
[2] A. N. Kirillov and A. M. Sazonov, “Hybrid model of population dynamics with a refuge regime: Regularization and self-organization”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp'yut. Nauki, 33:3 (2023), 467–482 (in Russian) | DOI | MR
[3] Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities, Nauka, M., 1978 (in Russian)
[4] A. N. Kirillov and A. M. Sazonov, `, “Predator—prey' model with variable interaction structure”, Tr. KarNTs RAN, 2023, no. 4, 36–40 (in Russian) | DOI
[5] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, M., 1985 (in Russian) | MR
[6] Deng J., Tang S., Lai C.-H., “Non-smooth ecological systems with a switching threshold depending on the pest density and its rate of change”, Nonlinear Anal. Hybri., 42:8 (2021), 1–24 | DOI | MR
[7] Zhang Y., Xiao Y., “Global dynamics for a Filippov epidemic system with imperfect vaccination”, Nonlinear Anal. Hybri., 38:6 (2020), 1–20 | DOI | MR
[8] V. I. Utkin, Sliding Modes in Optimization and Control Problems, Nauka, M., 1981 (in Russian)
[9] Acary V., Brogliato B., Orlov Y., “Chattering-Free Digital Sliding-Mode Control with State Observer and Disturbance Rejection”, IEEE Trans. Automat. Contr., 57:5 (2012), 1–16 | DOI | MR
[10] P. Hartman, Ordinary Differential Equations, John Wiley Sons, New York—London—Sydney, 1964 | MR
[11] N. N. Zavalishin and D. O. Logofet, “Modeling of ecological systems according to a given ‘stocks—flows’ diagram”, Mat. Model, 9:9 (1997), 3–17 (in Russian) | MR
[12] Shih S.-D., “The period of a Lotka—Volterra system”, Taiwan. J Math., 1:4 (1997), 451–470 | DOI | MR
[13] Atehortua A., Ladino L., Valverde J., “Population dynamics of a two-stage migratory species with predation and capture”, Nonlinear Anal. Real World Appl., 16:1 (2014), 27–39 | DOI | MR
[14] L. A. Petrosyan and V. V. Zakharov, Mathematical Models in Ecology, Izd. SPbGU, St. Petersburg, 1997 (in Russian) | MR
[15] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, IKI, M.—Izhevsk, 2003 (in Russian)
[16] A. S. Bratus', A. S. Novozhilov, and A. P. Platonov, Dynamical Systems and Models of Biology, Fizmalit, M., 2011 (in Russian)
[17] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, OGIZ, M., 1947 (in Russian) | MR