A model of hybrid population dynamics with refuge-regime: regularization and limit sets
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 34-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the regularization of the population “predator—prey” dynamics with the preys' intraspecific competition. The model has the form of the hybrid system consisting of the two two-dimensional systems switching between each other. The switching of the systems allows us to reproduce the special Refuge-regime when the prey number is very small and the predators have complications to find preys. The regularization of the system by using two switching lines to avoid chattering is provided. The limit sets for the regularized model are established. The studying of the model sensitivity to the switchings. The condition under which the hybridization does not change the global stability of an equilibrium is derived. In the other case the limit sets are cycles.
Keywords: hybrid system, population dynamics, regularization, limit set.
@article{SJIM_2024_27_4_a2,
     author = {A. N. Kirillov and A. M. Sazonov},
     title = {A model of hybrid population dynamics with refuge-regime: regularization and limit sets},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--48},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/}
}
TY  - JOUR
AU  - A. N. Kirillov
AU  - A. M. Sazonov
TI  - A model of hybrid population dynamics with refuge-regime: regularization and limit sets
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 34
EP  - 48
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/
LA  - ru
ID  - SJIM_2024_27_4_a2
ER  - 
%0 Journal Article
%A A. N. Kirillov
%A A. M. Sazonov
%T A model of hybrid population dynamics with refuge-regime: regularization and limit sets
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 34-48
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/
%G ru
%F SJIM_2024_27_4_a2
A. N. Kirillov; A. M. Sazonov. A model of hybrid population dynamics with refuge-regime: regularization and limit sets. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 34-48. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a2/

[1] Chen X., Huang L., “A Filippov system describing the effect of prey refuge use on a ratio-dependent predator—prey model”, J. Math. Anal. Appl., 428:2 (2015), 817–837 | DOI | MR

[2] A. N. Kirillov and A. M. Sazonov, “Hybrid model of population dynamics with a refuge regime: Regularization and self-organization”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp'yut. Nauki, 33:3 (2023), 467–482 (in Russian) | DOI | MR

[3] Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities, Nauka, M., 1978 (in Russian)

[4] A. N. Kirillov and A. M. Sazonov, `, “Predator—prey' model with variable interaction structure”, Tr. KarNTs RAN, 2023, no. 4, 36–40 (in Russian) | DOI

[5] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, M., 1985 (in Russian) | MR

[6] Deng J., Tang S., Lai C.-H., “Non-smooth ecological systems with a switching threshold depending on the pest density and its rate of change”, Nonlinear Anal. Hybri., 42:8 (2021), 1–24 | DOI | MR

[7] Zhang Y., Xiao Y., “Global dynamics for a Filippov epidemic system with imperfect vaccination”, Nonlinear Anal. Hybri., 38:6 (2020), 1–20 | DOI | MR

[8] V. I. Utkin, Sliding Modes in Optimization and Control Problems, Nauka, M., 1981 (in Russian)

[9] Acary V., Brogliato B., Orlov Y., “Chattering-Free Digital Sliding-Mode Control with State Observer and Disturbance Rejection”, IEEE Trans. Automat. Contr., 57:5 (2012), 1–16 | DOI | MR

[10] P. Hartman, Ordinary Differential Equations, John Wiley Sons, New York—London—Sydney, 1964 | MR

[11] N. N. Zavalishin and D. O. Logofet, “Modeling of ecological systems according to a given ‘stocks—flows’ diagram”, Mat. Model, 9:9 (1997), 3–17 (in Russian) | MR

[12] Shih S.-D., “The period of a Lotka—Volterra system”, Taiwan. J Math., 1:4 (1997), 451–470 | DOI | MR

[13] Atehortua A., Ladino L., Valverde J., “Population dynamics of a two-stage migratory species with predation and capture”, Nonlinear Anal. Real World Appl., 16:1 (2014), 27–39 | DOI | MR

[14] L. A. Petrosyan and V. V. Zakharov, Mathematical Models in Ecology, Izd. SPbGU, St. Petersburg, 1997 (in Russian) | MR

[15] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, IKI, M.—Izhevsk, 2003 (in Russian)

[16] A. S. Bratus', A. S. Novozhilov, and A. P. Platonov, Dynamical Systems and Models of Biology, Fizmalit, M., 2011 (in Russian)

[17] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, OGIZ, M., 1947 (in Russian) | MR