Numerical modeling of the induction logging signal in anisotropic oil and gas reservoirs with a layered structure
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 181-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this work is to analyze the effect of the anisotropic nature of the electric conductivity in an oil-bearing formation on the induction logging signal. The numerical modelling of the logging signal from a device consisting of an alternating current excitation coil and two receiving coils moved along the wellbore is carried out. The electromotive force induced in the receiving coils is investigated. The electric conductivity of the oil-bearing formation is characterized by either a diagonal tensor with dominant $\sigma_{xx}$, $\sigma_{yy}$ components or a dense tensor obtained by rotation to a specified zenith angle. Numerical modeling is performed with the vector finite element method on an adaptive unstructured tetrahedral grid taking into account the geometry of the logging device, vertical well, and layered host medium. The tensor electric conductivity is plugged into the variational formulation. Dependences of the apparent electric conductivity of the depth are obtained based on the electromotive force induced in the receiving coils.
Keywords: Maxwell's system of equations, anisotropy, vector finite element method, apparent electric conductivity, induction logging.
@article{SJIM_2024_27_4_a11,
     author = {M. I. Epov and E. P. Shurina and D. A. Arkhipov and D. V. Dobrolyubova and N. V. Shtabel' and E. I. Shtan'ko},
     title = {Numerical modeling of the induction logging signal in anisotropic oil and gas reservoirs with a layered structure},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {181--192},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a11/}
}
TY  - JOUR
AU  - M. I. Epov
AU  - E. P. Shurina
AU  - D. A. Arkhipov
AU  - D. V. Dobrolyubova
AU  - N. V. Shtabel'
AU  - E. I. Shtan'ko
TI  - Numerical modeling of the induction logging signal in anisotropic oil and gas reservoirs with a layered structure
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 181
EP  - 192
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a11/
LA  - ru
ID  - SJIM_2024_27_4_a11
ER  - 
%0 Journal Article
%A M. I. Epov
%A E. P. Shurina
%A D. A. Arkhipov
%A D. V. Dobrolyubova
%A N. V. Shtabel'
%A E. I. Shtan'ko
%T Numerical modeling of the induction logging signal in anisotropic oil and gas reservoirs with a layered structure
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 181-192
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a11/
%G ru
%F SJIM_2024_27_4_a11
M. I. Epov; E. P. Shurina; D. A. Arkhipov; D. V. Dobrolyubova; N. V. Shtabel'; E. I. Shtan'ko. Numerical modeling of the induction logging signal in anisotropic oil and gas reservoirs with a layered structure. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 181-192. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a11/

[1] M. I. Epov and V. N. Glinskikh, Electromagnetic Logging: Modeling and Inversion, Geo, Novosibirsk, 2005 (in Russian)

[2] A. A. Kaufman, Theory of Induction Logging, Nauka, Novosibirsk, 1965 (in Russian)

[3] I. V. Surodina and M. I. Epov, “Modeling of high-frequency electromagnetic logging diagrams in wells with highly conductive solution”, Karotazhnik, 5:5 (2013), 60–75 (in Russian)

[4] Epov M. I., Glinskikh V. N., Nikitenko M. N., Lapkovskaya A. A., Leonenko A. R., Petrov A. M., Sukhorukova K. V., Gornostalev D. I., “Modern algorithms and software for interpretation of resistivity logging data”, Geodyn. Tectonophys., 12:3S (2021), 669–682 | DOI

[5] Yavich N., Zhdanov M. S., “Contraction preconditioner in finite-difference electromagnetic modeling”, Geophys. J. Int., 206:3 (2016), 1718–1729 | DOI

[6] Weiss C. J., Newman G. A., “Electromagnetic induction in a fully 3D anisotropic earth”, Geophysics, 67:4 (2002), 1104–1114 | DOI

[7] Epov M. I., Shurina E. P., Shtabel N. V., “The mathematical modeling of the electric field in the media with anisotropic objects”, Appl. Numer. Math., 93 (2015), 164–175 | DOI

[8] Nechaev O. V., Glinskikh V. N., “Three-Dimensional Simulation and Inversion of Lateral Logging Sounding and Lateral Logging Data in Media with Tilt of the Main Axes of the Dielectric Anisotropy Tensor”, Vestn. Novosib. Gos. Univ. Ser. Inform. Technol., 16:4 (2018), 127–139 | DOI

[9] M. I. Plyusnin, Induction Logging, Nedra, M., 1973 (in Russian)

[10] Tabarovsky L. A., Rabinovich M. B., “Real time 2D inversion of induction logging data”, J. Appl. Geophys., 38:4 (1998), 251–275 | DOI

[11] Nikitenko M. N., Surodina I. V., Mikhaylov I. V., Glinskikh V. N., Suhorukova C. V., “Formation evaluation via 2D Processing of induction and galvanic logging data using highperformance computing”, Proc. 77th EAGE Conf. Exhibit, 2015 (2015), 1–5 | DOI

[12] Lu X., Alumbaugh D. L., “One-dimensional inversion of three-component induction logging in anisotropic media”, Proc. SEG Int. Exp. Ann. Meet, 2001, 2001–0376 | DOI

[13] Avdeev D. B., Kuvshinov A. V., Pankratov O. V., Newman G. A., “Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons”, Geophysics, 67:2 (2002), 413–426 | DOI

[14] Newman G. A., Alumbaugh D. L., “Three-dimensional induction logging problems, Part 2: A finite-difference solution”, Geophysics, 67:2 (2002), 484–491 | DOI

[15] Zhong L., Li J., Bhardwaj A., Shen L. C., Liu R. C., “Computation of triaxial induction logging tools in layered anisotropic dipping formations”, IEEE Trans. Geosci. Remote Sens., 46:4 (2008), 1148–1163 | DOI

[16] Hu Y., Sun Q., “Modeling of triaxial induction logging responses in multilayered anisotropic formations”, Geophysics, 86:4 (2021), 305–314 | DOI

[17] Golikov N. A., “Measurement of the anisotropy of the complex permittivity on samples of sandstone reservoirs of Western Siberia”, Interexpo GEO-Siberia, v. 3, 2018, 59–65

[18] Zhang M., Wu J., Liu Y., “Research on triaxial array induction logging response in inclined anisotropic formation”, J. Phys. Conf. Ser., 1617:1 (2020), 012086 | DOI

[19] Monk P., Finite element methods for Maxwell's equations, Oxford University Press, Oxford, 2003

[20] Webb J. P., “Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements”, IEEE Trans. Antennas Propag., 47:8 (1999), 1244–1253 | DOI