Keywords: computational geometry, numerical modeling, continuous medium, dynamic grid.
@article{SJIM_2024_27_4_a10,
author = {M. Y. Hrebtov and R. I. Mullyadzhanov},
title = {Computation of a distance field by means of combined geometry representation in fluid dynamics simulations with embedded boundaries},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {166--180},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a10/}
}
TY - JOUR AU - M. Y. Hrebtov AU - R. I. Mullyadzhanov TI - Computation of a distance field by means of combined geometry representation in fluid dynamics simulations with embedded boundaries JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 166 EP - 180 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a10/ LA - ru ID - SJIM_2024_27_4_a10 ER -
%0 Journal Article %A M. Y. Hrebtov %A R. I. Mullyadzhanov %T Computation of a distance field by means of combined geometry representation in fluid dynamics simulations with embedded boundaries %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 166-180 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a10/ %G ru %F SJIM_2024_27_4_a10
M. Y. Hrebtov; R. I. Mullyadzhanov. Computation of a distance field by means of combined geometry representation in fluid dynamics simulations with embedded boundaries. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 166-180. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a10/
[1] Popinet S., “A quadtree-adaptive multigrid solver for the Serre—Green—Naghdi equations”, J. Comput. Phys., 302:2 (2015), 336–358 | DOI
[2] Popinet S., “An accurate adaptive solver for surface-tension-driven interfacial flows”, J. Comput. Phys., 228:16 (2009), 5838–5866 | DOI
[3] Van Hooft J. A., Popinet S., Van Heerwaarden C. C., Van der Linden S. J., De Roode S. R., Van de Wiel B. J., “Towards adaptive grids for atmospheric boundary-layer simulations”, Boundary Layer Meteorol., 167:3 (2018), 421–443 | DOI
[4] Almgren A. S., Bell J. B., Colella P., Howell L. H., Welcome M. L., “A conservative adaptive projection method for the variable density incompressible Navier—Stokes equations”, J. Comput. Phys., 142:1 (1998), 1–46 | DOI
[5] Greaves D., “A quadtree adaptive method for simulating fluid flows with moving interfaces”, J. Comput. Phys., 194:1 (2004), 35–56 | DOI
[6] Huet D. P., Wachs A., “A Cartesian-octree adaptive front-tracking solver for immersed biological capsules in large complex domains”, J. Comput. Phys., 492:1 (2023), 112424 | DOI
[7] Johansen H., Colella P., “A Cartesian grid embedded boundary method for Poisson's equation on irregular domains”, J. Comput. Phys., 147:1 (1998), 60–85 | DOI
[8] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering application”, AIAA J., 32:8 (1994), 1598–1605 | DOI
[9] Günther C., Meinke M., Schröder W., “A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods”, Comput. Fluids, 102:1 (2014), 182–202 | DOI
[10] Limare A., Popinet S., Josserand C., Xue Z., Ghigo A., “A hybrid level-set/embedded boundary method applied to solidification-melt problems”, J. Comput. Phys., 474:10 (2023), 111829 | DOI
[11] Cheny Y., Botella O., “The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties”, J. Comput. Phys., 229:4 (2010), 1043–1076 | DOI
[12] Jones M. W., Baerentzen J. A., Sramek M., “3D distance fields: A survey of techniques and applications”, IEEE Trans. Vis. Comput. Graph., 12:4 (2006), 581–599 | DOI
[13] Hormann K., Agathos A., “The point in polygon problem for arbitrary polygons”, Comput. Geom., 20:3 (2001), 1043–1076 | DOI
[14] Baerentzen J. A., Aanaes H, “Signed distance computation using the angle weighted pseudonormal”, IEEE Trans. Vis. Comput. Graph., 11:3 (2005), 243–253 | DOI
[15] Vozhakov I. S., Hrebtov M. Y., Yavorsky N. I., Mullyadzhanov R. I., “Numerical Simulations of Swirling Water Jet Atomization: A Mesh Convergence Study”, Water, 15:14 (2023), 2552 | DOI
[16] Jones M. W., 3D distance from a point to a triangle, Technical Report CSR-5, Department of Computer Science, University of Wales Swansea, 1995