Modeling of wave propagation in a blocky medium with thin viscoelastic interlayers in a spatial setting
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional model of a blocky medium with elastic blocks and thin elastic and viscoelastic interlayers is considered. The interlayers are described by simplified differential-difference relations. A numerical algorithm for solving dynamical problems based on splitting method is presented. The results of simulation of wave propagation in blocky half-space are presented. We compare the behaviour of surface waves arising in a blocky layered medium and in a discrete periodic medium consisting of rigid masses connected to each other by elastic springs. Results of computations using the proposed model are in good agreement with the experimental data.
Keywords: blocky-layered medium, elastic block, thin interlayer.
@article{SJIM_2024_27_4_a1,
     author = {E. A. Efimov},
     title = {Modeling of wave propagation in a blocky medium with thin viscoelastic interlayers in a spatial setting},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {20--33},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a1/}
}
TY  - JOUR
AU  - E. A. Efimov
TI  - Modeling of wave propagation in a blocky medium with thin viscoelastic interlayers in a spatial setting
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 20
EP  - 33
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a1/
LA  - ru
ID  - SJIM_2024_27_4_a1
ER  - 
%0 Journal Article
%A E. A. Efimov
%T Modeling of wave propagation in a blocky medium with thin viscoelastic interlayers in a spatial setting
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 20-33
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a1/
%G ru
%F SJIM_2024_27_4_a1
E. A. Efimov. Modeling of wave propagation in a blocky medium with thin viscoelastic interlayers in a spatial setting. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 20-33. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a1/

[1] M. A. Sadovskii, “Natural lumpiness of rock”, Dokl. Akad. Nauk SSSR, 247 (1979), 829–832 (in Russian)

[2] M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum-type waves. 2. Experimental methods and main results of physical modeling”, Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaemykh, 1996, no. 4, 3–39 (in Russian)

[3] N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, “Experimental verification of a one-dimensional calculation model of wave propagation in a blocky medium”, Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaemykh, 2005, no. 3, 46–55 (in Russian)

[4] N. I. Aleksandrova and E. N. Sher, “Propagation of waves in a two-dimensional periodic model of a blocky medium. Part 1: Features of the wave field under the action of a pulsed source”, Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaemykh, 2010, no. 6, 57–68 (in Russian)

[5] Alexandrova N. I., “The discrete Lamb problem: Elastic lattice waves in a block medium”, Wave Motion, 51:5 (2014), 818–832 | DOI | MR

[6] Alexandrova N. I., “Seismic waves in a three-dimensional block medium”, Proc. R. Soc. A, 472:2192 (2016), 20160111 | DOI | MR

[7] V. A. Saraikin, A. G. Chernikov, and E. N. Sher, “Propagation of waves in a two-dimensional blocky medium with viscoelastic layers (theory and experiment)”, Prikl. Mekh. Tekh. Fiz., 56:4 (2015), 688–697 (in Russian) | DOI | MR

[8] V. M. Sadovskii, O. V. Sadovskaya, and M. A. Pokhabova, “Modeling of elastic waves in a blocky medium based on the Cosserat continuum equations”, Vychisl. Mekh. Sploshn. Sred, 7:1 (2014), 52–60 (in Russian) | DOI

[9] Sadovskii V. M., Sadovskaya O. V., Lukyanov A. A., “Modeling of wave processes in blocky media with porous and fluid-saturated interlayers”, J. Comput. Phys., 345 (2017), 834–855 | DOI | MR

[10] Sadovskii V. M., Sadovskaya O. V., “Numerical algorithm based on implicit finite-difference schemes for analysis of dynamic processes in blocky media”, Russ. J. Numer. Anal. Math. Model, 33:2 (2018), 111–121 | DOI | MR

[11] O. V. Sadovskaya and V. M. Sadovskii, Mathematical Modeling in Problems of Granular Media Mechanics, Fizmatlit, M., 2008 (in Russian)

[12] V. M. Sadovskii, Discontinuous Solutions in Problems of Dynamics of Elastic-Plastic Media, Nauka, M., 1997 (in Russian)

[13] Sadovskii V. M., Sadovskaya O. V., “Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum”, Wave Motion, 52 (2015), 138–150 | DOI | MR

[14] S. K. Godunov, Equations of Mathematical Physics, Nauka, M., 1979 (in Russian)

[15] G. I.Marchuk, Splitting Methods, Nauka, M., 1988 (in Russian)

[16] S. K. Godunov, A. V. Zbrodin, M. Ya. Ivanov, and G. P. Kraiko, Numerical Solution of Multidimensional Problems of Gas Dynamics, Nauka, M., 1976 (in Russian)

[17] A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Issues of Numerical Solution of Hyperbolic Systems of Equations, Fizmatlit, M., 2001 (in Russian)

[18] G. V. Ivanov, Yu. M. Volchkov, I. O. Bogulskii, S. A. Anisimov, and V. D. Kurguzov, Numerical Solution of Dynamic Problems of Elastic-Plastic Deformation of Solids, Sib. Univ. Izd., Novosibirsk, 2002 (in Russian)

[19] M. A. Il'gamov and A. I. Gil'manov, Nonreflecting Conditions at the Boundaries of the Computational Domain, Fizmatlit, M., 2003 (in Russian)

[20] S. A. Anisimov and V. D. Kurguzov, “Modeling of nonreflecting conditions in numerical solution of elasticity theory problems”, Vychisl. Tekhnol., 4:1 (1999), 3–13 (in Russian)

[21] Appelo D., Hagstrom G. Kreiss, “Perfectly matched layers for hyperbolic systems: General formulation, well-posedness and stability”, SIAM J. Appl. Math., 67 (2006), 1–23 | DOI | MR

[22] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Fizmatlit, M., 1985 (in Russian)

[23] Blanch J. O., Robertsson J. O., Symes W. W., “Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique”, Geophysics, 60 (1995), 176–184 | DOI