Keywords: elliptic equation with piecewise constant coefficients, integro-differential boundary condition, finite volume method, unstructured grid, complete electrode model, conductivity reconstruction, iteratively regularized Gauss—Newton method.
@article{SJIM_2024_27_4_a0,
author = {A. A. Afanasyeva and A. V. Starchenko},
title = {Numerical solution of the inverse problem of electrical impedance tomography using the iteration method},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {5--19},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a0/}
}
TY - JOUR AU - A. A. Afanasyeva AU - A. V. Starchenko TI - Numerical solution of the inverse problem of electrical impedance tomography using the iteration method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 5 EP - 19 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a0/ LA - ru ID - SJIM_2024_27_4_a0 ER -
%0 Journal Article %A A. A. Afanasyeva %A A. V. Starchenko %T Numerical solution of the inverse problem of electrical impedance tomography using the iteration method %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 5-19 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a0/ %G ru %F SJIM_2024_27_4_a0
A. A. Afanasyeva; A. V. Starchenko. Numerical solution of the inverse problem of electrical impedance tomography using the iteration method. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 4, pp. 5-19. http://geodesic.mathdoc.fr/item/SJIM_2024_27_4_a0/
[1] Borcea L., “Electric Impedance Tomography. Topical Review”, Inverse Probl., 18 (2002), R99–R136 | DOI | MR
[2] Hao Y., Liu H., Liu Z., Wang Z., Jia J., “High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning”, Comput. Methods Programs Biomed., 243 (2024), 107861 | DOI
[3] A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, M., 1986 (in Russian)
[4] M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Nauka, M., 1980 (in Russian) | MR
[5] S. I. Kabanikhin, Inverse and Ill-Posed Problems, Sib. Nauchn. Izd., Novosibirsk, 2009 (in Russian)
[6] A. B. Bakushinskii, “To the problem of convergence of the iterative-regularized Gauss—Newton method”, Comput. Math. Math. Phys., 32:9 (1992), 1353–1359 | MR
[7] Qi-Nian J., “On the Iteratively Regularized Gauss-Newton Method for Solving Nonlinear Ill-Posed Problems”, Math. Comp., 69:232 (2000), 1603–1623 | DOI | MR
[8] Ahmad S., Strauss T., Kupis S., Khan T., “Comparison of statistical inversion with iteratively regularized Gauss Newton method for image reconstruction in electrical impedance tomography”, Appl. Math. Comput., 358 (2019), 436–448 | DOI | MR
[9] Gehre M., Kluth T., Lipponen A., Jin B., Seppanen A., Kaipio J. P., Maass P., “Sparsity reconstruction in electrical impedance tomography: An experimental evaluation”, J. Comput. Appl. Math., 236:8 (2012), 2126–2136 | DOI | MR
[10] Darbas M., Heleine J., Mendoza R., Velasco A. C., “Sensitivity analysis of the complete electrode model for electrical impedance tomography”, AIMS Mathematics, 6:7 (2021), 7333–7366 | DOI | MR
[11] L. I. Sedov, Continuum Mechanics, v. 1, Nauka, M., 1994 (in Russian) | MR
[12] Gehre M., Jin B., “Expectation Propagation for Nonlinear Inverse Problems — with an Application to Electrical Impedance Tomography”, Numer. Anal., 2013, 1–35 | DOI | MR
[13] Somersalo E., Cheney M., Isaacson D., “Existence and uniqueness for electrode models for electric current computed tomography”, SIAM J. Appl. Math., 52 (1992), 1023–1040 | DOI | MR
[14] Cheney M., Isaacson D., Newell J. C., “Electrical Impedance Tomography”, SIAM Review, 41:1 (1999), 85–101 | DOI | MR
[15] O. V. Baturin, N. V. Baturin, and V. N. Matveev, Construction of Computational Models in the Gambit Preprocessor of the Universal Software Package Fluent, Izd. Samarsk. Gos. Aerokosm. Univ., Samara, 2010 (in Russian)
[16] E. S. Sherina and A. V. Starchenko, “Difference schemes based on the finite volume method for the problem of electrical impedance tomography”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., no. 3 (29), 25–38 (in Russian)
[17] Li J., Yuan Y., “Numerical simulation and analysis of generalized difference method on triangular networks for electrical impedance tomography”, Appl. Math. Model., 3:5 (2009), 2175–2186 | DOI | MR
[18] A. A. Afanasyeva and A. V. Starchenko, “Numerical solution of the direct problem of electrical impedance tomography in the complete electrode formulation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 5–21 (in Russian) | DOI
[19] A. V. Starchenko, M. A. Sednev, and S. V. Pan'ko, “Approximate analytical solution of the direct problem of electrical impedance tomography in an inhomogeneous disk taking into account the resistance of the electrodes”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74, 19–29 (in Russian) | DOI