Inverse problems of finding a source in the heat equation from a nonlocal observation
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 143-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the statement of inverse problems of finding the right-hand side of the heat equation from an additional integral condition and justifies their Hadamard wellposedness in the class of regular solutions. The uniqueness of solutions of the problems is proved on the basis of integral identities. The solutions of the problems are constructed explicitly using separation of variables and the integral equation method.
Keywords: heat equation, inverse problem, uniqueness of solution, method of integral identities, series, integral equation, stability of solution.
Mots-clés : existence of solution
@article{SJIM_2024_27_3_a9,
     author = {K. B. Sabitov},
     title = {Inverse problems of finding a source in the heat equation from a nonlocal observation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {143--156},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a9/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - Inverse problems of finding a source in the heat equation from a nonlocal observation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 143
EP  - 156
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a9/
LA  - ru
ID  - SJIM_2024_27_3_a9
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T Inverse problems of finding a source in the heat equation from a nonlocal observation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 143-156
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a9/
%G ru
%F SJIM_2024_27_3_a9
K. B. Sabitov. Inverse problems of finding a source in the heat equation from a nonlocal observation. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 143-156. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a9/

[1] A. M. Denisov, Introduction to the Theory of Inverse Problems, Mosk. Gos. Univ., M., 1994 (in Russian)

[2] S. I. Kabanikhin, Inverse and Ill-Posed Problems, Sib. Nauchn. Izd., Novosibirsk, 2009 (in Russian)

[3] K. B. Sabitov and A. R. Zainullov, “Inverse problems for the heat equation to find the initial condition and the right-hand side”, Uch. Zap. Kazan. Univ. Fiz.-Mat. Nauki, 161:2 (2019), 271–291 (in Russian); 23:11, 1971–1980 | MR | Zbl

[4] A. I. Prilepko and V. V. Solov'ev, “Solvability theorems and Rothe's method in inverse problems for parabolic equations. I; II”, Differ. Uravn., 23:10 (1987), 1791–1799 ; 23:11, 1971–1980 (in Russian) | MR | MR | MR | Zbl | Zbl

[5] A. I. Prilepko and A. B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation”, Sb. Math., 75:2 (1993), 473–490 | DOI | MR

[6] D. G. Orlovskii, “On the problem of determining the parameter of the evolution equation”, Differ. Uravn., 26:9 (1990), 1614–1621 (in Russian) | MR

[7] S. G. Pyatkov, “On some inverse problems for first order operator-differential equations”, Sib. Math. J., 60:1 (2019), 140–147 | DOI | MR | Zbl

[8] S. G. Pyatkov and E. I. Safonov, “On some classes of inverse problems of recovering a source function”, Sib. Adv. Math., 27:2 (2017), 119–132 | DOI | MR

[9] S. G. Pyatkov and M. V. Uvarova, “On determining the source function in heat and mass transfer problems under integral overdetermination conditions”, J. Appl. Ind. Math., 10:4 (2016), 549–555 | DOI | MR | Zbl

[10] A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sb. Math., 204:10 (2013), 1391–1434 | DOI | DOI | MR | Zbl

[11] K. B. Sabitov, “Boundary value problem for a parabolic-hyperbolic equation with a nonlocal integral condition”, Differ. Equations, 46:10 (2010), 1472–1481 | DOI | MR | Zbl

[12] Romanov V., Hasanov A., “Uniqueness and stability analysis of final data inverse sourse problems for evolution equations”, J. Inverse Ill-Posed Probl., 30:3 (2022), 425–446 | DOI | MR | Zbl

[13] K. B. Sabitov, Inverse Problems for Equations of Mathematical Physics, Nauka, M., 2023 (in Russian) | MR