Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 126-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamics of axisymmetric two-dimensional strains in a linear elastic half-space bounded by a smooth surface of revolution with positive Gaussian curvature is considered. An approximate solution of the initial-boundary value problem is constructed on the basis of ray series with expansion in a time-like variable. The limited number of terms of the ray series is used for near-front domains of curvilinear waves of strong discontinuities. The coefficients of this series are the discontinuities of the derivatives of displacements with respect to time (starting from the first derivative). It is shown that it is necessary to take into account the ray series components up to the $(k + 1)$st order inclusive at the $k$th step of the ray method for a two-dimensional type of the deformation process.
Keywords: linear elastic medium, axisymmetric problem, surface of strong discontinuities, ray series, attenuation equation.
@article{SJIM_2024_27_3_a8,
     author = {V. E. Ragozina and Yu. E. Ivanova and O. V. Dudko},
     title = {Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {126--142},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a8/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
AU  - O. V. Dudko
TI  - Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 126
EP  - 142
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a8/
LA  - ru
ID  - SJIM_2024_27_3_a8
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%A O. V. Dudko
%T Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 126-142
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a8/
%G ru
%F SJIM_2024_27_3_a8
V. E. Ragozina; Yu. E. Ivanova; O. V. Dudko. Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 126-142. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a8/

[1] Fedorova L. V., “Solution of the dynamic problem of the linear theory of elasticity”, Mech. Solids, 53:6 (2018), 609–614 | DOI

[2] Fesenko A., Vaysfel'd N., “The dynamical problem for the infinite elastic layer with a cylindrical cavity”, Procedia Struct. Integrity, 33 (2021), 509–527 | DOI

[3] A. V. Il'yashenko, “Propagation of a flat shock front in an elastic layer”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 5:5 (2022), 141–149 (in Russian) | DOI | MR | Zbl

[4] Burenin A. A., Gerasimenko E. A., Kovtanyuk L. V., “On the unloading dynamics in an elastic/viscoplastic material predeformed by viscometric twisting”, Mater. Phys. Mech., 51:1 (2023), 68–83 | DOI

[5] V. M. Sadovskii, “To the theory of shock waves in isotropically hardening plastic media”, Prikl. Mat. Mekh., 87:2 (2023), 254–264 (in Russian) | DOI | Zbl

[6] Surana K. S., Knight J., Reddy J. N., “Nonlinear waves in solid continua with finite deformation”, Am. J. Comput. Math., 5:3 (2015), 345–386 | DOI

[7] S. G. Pshenichnov, “Nonstationary dynamic problems of nonlinear viscoelasticity”, Mech. Solids, 48:1 (2013), 68–78 | DOI

[8] Fesenko A. A., Moyseenok A. P., “Exact solution of a nonstationary problem for the elastic layer with rigid cylindrical inclusion”, J. Math. Sci., 249 (2020), 478–495 | DOI | MR

[9] Korovaytseva E. A., Pshenichnov S. G., “Solutions of non-stationary dynamic problems of linear viscoelasticity”, Lobachevskii J. Math., 40 (2019), 328–334 | DOI | MR | Zbl

[10] D. V. Tarlakovskii, A. A. Saliev, M. O. Musurmanova, and A. M. Shukurov, “Nonstationary oscillations of an elastic-porous space with two spherical cavities under the action of shear waves”, Proc. XXV Gorshkov Int. Sympos. “Dynamic and technological problems of mechanics of structures and continuous media”, v. 2, 2019, 131–133 (in Russian)

[11] Rossikhin Yu. A., Shitikova M. V., “Ray expansion theory”, Encycl. Contin. Mech., 2019, 2126–2141 | DOI

[12] V. A. Vestyak and D. V. Tarlakovskii, “Nonstationary axisymmetric strain of elastic space with a spherical cavity under the action of volumetric forces”, Vestn. Mosk. Gos. Univ. Ser. 1. Mat. Mekh., 2016, no. 4, 48–54 (in Russian) | Zbl

[13] Kachalov A. P., “Ray type solutions for waves of finite deformation in physically linear, nonlinear inhomogeneous elastic media”, J. Math. Sci., 224 (2017), 79–89 | DOI | MR | Zbl

[14] Dyyak I., Horlatch V., Salamakha M., “Parallel solution of dynamic elasticity problems”, Lect. Notes Mech. Eng., 2020, 562–571 | DOI

[15] Seriani G., Oliveira S. P., “Numerical modeling of mechanical wave propagation”, Riv. del Nuovo Cim., 2020, no. 43, 459–514 | DOI

[16] I. B. Petrov, “Grid-characteristic methods. 55 years of developing and solving complex dynamic problems”, Comput. Math. Inf. Technol., 6:1 (2023), 6–21 (in Russian) | DOI | MR

[17] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, New York—London—Sydney—Toronto, 1974

[18] N. D. Verveiko and M. V. Egorov, “Mathematical modeling of dynamic strain of elastic-viscoplastic shells of finite length by the ray method”, Vestn. Samarsk. Gos. Tekh. Univ Ser. Fiz.-Mat. Nauki, 22:2 (2018), 325–343 | DOI | Zbl

[19] Loktev A. A., Gridasova E. A., Zapol'nova E. V., “Simulation of the railway under dynamic loading. Part 1. Ray method for dynamic problem”, Contemp. Eng. Sci., 8:20 (2015), 799–807 | DOI

[20] Rossikhin Y. A., Burenin A. A., Potianikhin D. A., “Shock waves via ray expansions”, Encyclopedia of Continuum Mechanics, 2019, 2264–2279 | DOI

[21] Yu. S. Kazakov and D. V. Tarlakovskii, “Taking into account friction at the initial stage of vertical penetration of a convex striker into an elastic half-plane”, Probl. Prochn. Plastichn., 84:2 (2022), 225–235 (in Russian) | DOI

[22] V. L. Kotov, E. Yu. Linnik, and A. A. Tarasova, “Study of optimal forms of axisymmetric bodies penetrating into soil media”, Prikl. Mekh. Tekh. Fiz., 57:5 (2016), 66–75 (in Russian) | DOI

[23] Yu. I. Dimitrienko, Continuum Mechanics, A Textbook in 4 Vols., v. 4, Fundamentals of Solid Mechanics, Izd. MGTU im. N.E Baumana, M., 2013 (in Russian)

[24] E. A. Gerasimenko, “To the problem of identifying discontinuities in numerical calculations of strain dynamics”, Uch. Zap. KnAGTU, 2022, no. 5, 46–54 (in Russian) | DOI

[25] Yu. N. Podil'chuk and Yu. K. Rubtsov, Ray Methods in the Theory of Wave Propagation and Scattering, Naukova Dumka, Kiev, 1988 (in Russian)

[26] Babich V. M., Buldyrev V. S., Asymptotic methods in short-wavelength diffraction theory, Alpha Science, Oxford, 2009 | MR

[27] V. E. Ragozina and Yu. E. Ivanova, “Solution of a multidimensional impact deformation problem for an elastic half-space with curved boundary on the basis of a modified ray method”, Mech. Solids, 51:4 (2016), 484–493 | DOI | MR