On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 111-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary control method is applied to the solution of one-dimensional discrete inverse problems. The discrete counterparts of the operators used in the method (the control, response, and connecting operators) are defined. The relations between the operators corresponding to the discrete wave equation and the discrete heat equation are established.
Keywords: boundary control method, connection between data of inverse problems, discrete dynamical system.
@article{SJIM_2024_27_3_a7,
     author = {A. S. Mikhaylov and V. S. Mikhaylov},
     title = {On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--125},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/}
}
TY  - JOUR
AU  - A. S. Mikhaylov
AU  - V. S. Mikhaylov
TI  - On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 111
EP  - 125
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/
LA  - ru
ID  - SJIM_2024_27_3_a7
ER  - 
%0 Journal Article
%A A. S. Mikhaylov
%A V. S. Mikhaylov
%T On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 111-125
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/
%G ru
%F SJIM_2024_27_3_a7
A. S. Mikhaylov; V. S. Mikhaylov. On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 111-125. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/

[1] Belishev M. I., “Boundary control and inverse problems: The one-dimensional variant of the BC-method”, J. Math. Sci., 155:3 (2008), 343–378 | DOI | MR | Zbl

[2] Belishev M. I., Mikhaylov V. S., “Unified approach to classical equations of inverse problem theory”, J. Inverse Ill-Posed Probl., 20:4 (2012), 461–488 | DOI | MR | Zbl

[3] M. M. Lavrent'ev, K. G. Reznitskaya, and V. G. Yakhno, One-Dimensional Inverse Problems of Mathematical Physics, Nauka, Novosibirsk, 1982 (in Russian) | MR

[4] M. G. Krein, “On one method of effective solution of the inverse boundary value problem”, Dokl. Akad. Nauk SSSR, 94:6 (1954), 987–990 (in Russian) | Zbl

[5] A. S. Blagoveshchenskii, “On a local method for solving a nonstationary inverse problem for an inhomogeneous string”, Tr. MIAN SSSR, 115, 1971, 28–38 (in Russian)

[6] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for the discrete Schrödinger operator”, Nanosyst. Phys. Chem. Math., 7:5 (2016), 842–853 | DOI | Zbl

[7] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for Jacobi matrices”, Inverse Probl. Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl

[8] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for a Krein—Stieltjes string”, Appl. Math. Lett., 96 (2019), 195–201 | DOI | MR | Zbl

[9] Akhiezer N. I., The classical moment problem, Oliver and Boyd, Edinburgh, 1965 | DOI | Zbl

[10] Schmüdgen K., The moment problem, Springer, Cham, 2017 | DOI | MR | Zbl

[11] Simon B., “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl

[12] Mikhaylov A. S., Mikhaylov V. S., “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Anal. Appl., 487:1 (2020), 123970 | DOI | MR | Zbl

[13] Mikhaylov A. S., Mikhaylov V. S., “On an application of the Boundary control method to classical moment problems”, J. Phys. Conf. Ser., 2092 (2021), 012002 | DOI

[14] Berg C., Chen Y., Ismail M. E. H., “Small eigenvalues of large Hankel matrices: The indeterminate case”, Math. Scand., 91:1 (2002), 67–81 | DOI | MR | Zbl

[15] Berg C., Szwarc R., “Inverse of infinite Hankel moment matrices”, Symmetry Integr. Geom., 14 (2018), 109 | DOI | MR | Zbl

[16] Berg C., Szwarc R., “Closable Hankel Operators and Moment Problems”, Integral Equ. Oper. Theory, 92:1 (2020), 5 | DOI | MR | Zbl