@article{SJIM_2024_27_3_a7,
author = {A. S. Mikhaylov and V. S. Mikhaylov},
title = {On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {111--125},
year = {2024},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/}
}
TY - JOUR AU - A. S. Mikhaylov AU - V. S. Mikhaylov TI - On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 111 EP - 125 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/ LA - ru ID - SJIM_2024_27_3_a7 ER -
%0 Journal Article %A A. S. Mikhaylov %A V. S. Mikhaylov %T On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 111-125 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/ %G ru %F SJIM_2024_27_3_a7
A. S. Mikhaylov; V. S. Mikhaylov. On the connections between hyperbolic and parabolic inverse one-dimensional discrete problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 111-125. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a7/
[1] Belishev M. I., “Boundary control and inverse problems: The one-dimensional variant of the BC-method”, J. Math. Sci., 155:3 (2008), 343–378 | DOI | MR | Zbl
[2] Belishev M. I., Mikhaylov V. S., “Unified approach to classical equations of inverse problem theory”, J. Inverse Ill-Posed Probl., 20:4 (2012), 461–488 | DOI | MR | Zbl
[3] M. M. Lavrent'ev, K. G. Reznitskaya, and V. G. Yakhno, One-Dimensional Inverse Problems of Mathematical Physics, Nauka, Novosibirsk, 1982 (in Russian) | MR
[4] M. G. Krein, “On one method of effective solution of the inverse boundary value problem”, Dokl. Akad. Nauk SSSR, 94:6 (1954), 987–990 (in Russian) | Zbl
[5] A. S. Blagoveshchenskii, “On a local method for solving a nonstationary inverse problem for an inhomogeneous string”, Tr. MIAN SSSR, 115, 1971, 28–38 (in Russian)
[6] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for the discrete Schrödinger operator”, Nanosyst. Phys. Chem. Math., 7:5 (2016), 842–853 | DOI | Zbl
[7] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for Jacobi matrices”, Inverse Probl. Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl
[8] Mikhaylov A. S., Mikhaylov V. S., “Dynamic inverse problem for a Krein—Stieltjes string”, Appl. Math. Lett., 96 (2019), 195–201 | DOI | MR | Zbl
[9] Akhiezer N. I., The classical moment problem, Oliver and Boyd, Edinburgh, 1965 | DOI | Zbl
[10] Schmüdgen K., The moment problem, Springer, Cham, 2017 | DOI | MR | Zbl
[11] Simon B., “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl
[12] Mikhaylov A. S., Mikhaylov V. S., “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Anal. Appl., 487:1 (2020), 123970 | DOI | MR | Zbl
[13] Mikhaylov A. S., Mikhaylov V. S., “On an application of the Boundary control method to classical moment problems”, J. Phys. Conf. Ser., 2092 (2021), 012002 | DOI
[14] Berg C., Chen Y., Ismail M. E. H., “Small eigenvalues of large Hankel matrices: The indeterminate case”, Math. Scand., 91:1 (2002), 67–81 | DOI | MR | Zbl
[15] Berg C., Szwarc R., “Inverse of infinite Hankel moment matrices”, Symmetry Integr. Geom., 14 (2018), 109 | DOI | MR | Zbl
[16] Berg C., Szwarc R., “Closable Hankel Operators and Moment Problems”, Integral Equ. Oper. Theory, 92:1 (2020), 5 | DOI | MR | Zbl