Keywords: phase field, order parameter, electric breakdown.
@article{SJIM_2024_27_3_a5,
author = {E. V. Zipunova and A. A. Kuleshov and E. B. Savenkov},
title = {Numerical studies of the phase field model describing electric breakdown in a heterogeneous medium},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {74--94},
year = {2024},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a5/}
}
TY - JOUR AU - E. V. Zipunova AU - A. A. Kuleshov AU - E. B. Savenkov TI - Numerical studies of the phase field model describing electric breakdown in a heterogeneous medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 74 EP - 94 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a5/ LA - ru ID - SJIM_2024_27_3_a5 ER -
%0 Journal Article %A E. V. Zipunova %A A. A. Kuleshov %A E. B. Savenkov %T Numerical studies of the phase field model describing electric breakdown in a heterogeneous medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 74-94 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a5/ %G ru %F SJIM_2024_27_3_a5
E. V. Zipunova; A. A. Kuleshov; E. B. Savenkov. Numerical studies of the phase field model describing electric breakdown in a heterogeneous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 74-94. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a5/
[1] G. A. Vorob'ev, Yu. P. Pokholkov, Yu. D. Korolev, and V. I. Merkulov, Physics of Dielectrics (the Region of Strong Fields), Tomsk. Politekh. Univ., Tomsk, 2011 (in Russian)
[2] Pitike K. C., Hong W., “Phase-field model for dielectric breakdown in solids”, J. Appl. Phys., 115:4 (2014), 044101 | DOI
[3] Ambati M., Gerasimov T., De Lorenzis L., “A review on phase-field models of brittle fracture and a new fast hybrid formulation”, Comput. Mech., 55:2 (2015), 383–405 | DOI | MR | Zbl
[4] Zipunova E., Savenkov E., “Phase field model for electrically induced damage using microforce theory”, Math. Mech. Solids, 27:6 (2021) | DOI | MR
[5] Fried E., Gurtin M. E., “Continuum theory of thermally induced phase transitions based on an order parameter”, Physica, 68:3 (1993), 326–343 | DOI | MR | Zbl
[6] Gurtin M. E., “Generalized Ginzburg—Landau and Cahn—Hilliard equations based on a microforce balance”, Phisica D, 92:3 (1996), 178–192 | DOI | MR | Zbl
[7] Zipunova E., Savenkov E., “On the Diffuse Interface Models for High Codimension Dispersed Inclusions”, Mathematics, 9:18 (2021) | DOI
[8] Sargado J. M., Keilegavlen E., Berre I., Nordbotten J. M., “High-accuracy phase-field models for brittle fracture based on a new family of degradation functions”, J. Mech. Phys. Solids, 111 (2018), 458–489 | DOI | MR | Zbl