@article{SJIM_2024_27_3_a2,
author = {A. F. Voronin},
title = {On conditions for the well-posed solvability of a factorization problem and a class of truncated {Wiener{\textemdash}Hopf} equations},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {26--35},
year = {2024},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/}
}
TY - JOUR AU - A. F. Voronin TI - On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 26 EP - 35 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/ LA - ru ID - SJIM_2024_27_3_a2 ER -
%0 Journal Article %A A. F. Voronin %T On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 26-35 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/ %G ru %F SJIM_2024_27_3_a2
A. F. Voronin. On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 26-35. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/
[1] A. F. Voronin, “On a factorization method for matrix functions in the Wiener algebra of order 2”, J. Appl. Ind. Math., 16:2 (2022), 385–376 | DOI | MR | Zbl
[2] Gohberg I., Kaashoek M. A., SpitkovskyI. M., “An overview of matrix factorization theory and operator applications, Factorization and integrable systems”, Oper. Theory Adv. Appl., 141 (2003), 1–102 | MR | Zbl
[3] V. M. Adukov, “Normalization of Wiener—Hopf factorization for $2 \times 2$ matrix functions and its application”, Ufa Math. J., 14:4 (2022), 3–15 | MR | Zbl
[4] Kisil A. V., Abrahams I. D., Mishuris G., Rogosin S. V., “The Wiener—Hopf Technique, its Generalizations and Applications: Constructive and Approximate Methods”, Proc. Roy. Soc. A, 477 (2021), 20210533 | DOI | MR
[5] S. N. Kiyasov, “A class of Hölder matrix functions of the second order admitting effective factorization”, Russ. Math., 66:10 (2022), 56–61 | DOI | MR | Zbl
[6] A. F. Voronin, “Construction of factorization of one class of matrix functions in the Wiener algebra of order two”, Izv. VUZov. Mat., 2023, no. 3, 41–51 (in Russian) | Zbl
[7] F. D. Gakhov and Yu. I. Cherskii, Convolution Type Equations, Nauka, M., 1978 (in Russian) | MR
[8] V. G. Romanov, “On justification of the Gelfand—Levitan—Krein Method for a two-dimensional inverse problem”, Sib. Math. J., 62:5 (2021), 908–924 | DOI | MR | MR | Zbl
[9] Kabanikhin S., Shishleni M., Novikov N., Prokhoshin N., “Spectral, Scattering and Dynamics: Gelfand—Levitan—Marchenko—Krein Equations”, Mathematics, 11:21 (2023), 4458–4468 | DOI
[10] A. F. Voronin, “On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener—Hopf equation”, Russ. Math., 64:12 (2020), 20–28 | DOI | MR | Zbl