On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 26-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the study of the relationship between the convolution equation of the second kind on a finite interval $(0, \tau)$ (which is also called the truncated Wiener—Hopf equation) and a factorization problem (which is also called a vector Riemann—Hilbert boundary value problem or a vector Riemann boundary value problem). The factorization problem is associated with a family of truncated Wiener—Hopf equations depending on the parameter $\tau\in(0, \infty)$. The well-posed solvability of this family of equations is shown depending on the existence of a canonical factorization of some matrix function. In addition, various possible applications of the factorization problem and truncated Wiener—Hopf equations are considered.
Keywords: Wiener algebra, factorization problem, partial index, truncated Wiener—Hopf equation.
@article{SJIM_2024_27_3_a2,
     author = {A. F. Voronin},
     title = {On conditions for the well-posed solvability of a factorization problem and a class of truncated {Wiener{\textemdash}Hopf} equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--35},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 26
EP  - 35
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/
LA  - ru
ID  - SJIM_2024_27_3_a2
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 26-35
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/
%G ru
%F SJIM_2024_27_3_a2
A. F. Voronin. On conditions for the well-posed solvability of a factorization problem and a class of truncated Wiener—Hopf equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 26-35. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a2/

[1] A. F. Voronin, “On a factorization method for matrix functions in the Wiener algebra of order 2”, J. Appl. Ind. Math., 16:2 (2022), 385–376 | DOI | MR | Zbl

[2] Gohberg I., Kaashoek M. A., SpitkovskyI. M., “An overview of matrix factorization theory and operator applications, Factorization and integrable systems”, Oper. Theory Adv. Appl., 141 (2003), 1–102 | MR | Zbl

[3] V. M. Adukov, “Normalization of Wiener—Hopf factorization for $2 \times 2$ matrix functions and its application”, Ufa Math. J., 14:4 (2022), 3–15 | MR | Zbl

[4] Kisil A. V., Abrahams I. D., Mishuris G., Rogosin S. V., “The Wiener—Hopf Technique, its Generalizations and Applications: Constructive and Approximate Methods”, Proc. Roy. Soc. A, 477 (2021), 20210533 | DOI | MR

[5] S. N. Kiyasov, “A class of Hölder matrix functions of the second order admitting effective factorization”, Russ. Math., 66:10 (2022), 56–61 | DOI | MR | Zbl

[6] A. F. Voronin, “Construction of factorization of one class of matrix functions in the Wiener algebra of order two”, Izv. VUZov. Mat., 2023, no. 3, 41–51 (in Russian) | Zbl

[7] F. D. Gakhov and Yu. I. Cherskii, Convolution Type Equations, Nauka, M., 1978 (in Russian) | MR

[8] V. G. Romanov, “On justification of the Gelfand—Levitan—Krein Method for a two-dimensional inverse problem”, Sib. Math. J., 62:5 (2021), 908–924 | DOI | MR | MR | Zbl

[9] Kabanikhin S., Shishleni M., Novikov N., Prokhoshin N., “Spectral, Scattering and Dynamics: Gelfand—Levitan—Marchenko—Krein Equations”, Mathematics, 11:21 (2023), 4458–4468 | DOI

[10] A. F. Voronin, “On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener—Hopf equation”, Russ. Math., 64:12 (2020), 20–28 | DOI | MR | Zbl