Extrapolation of tomographic images based on data of multiple pulsed probing
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 177-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes a new approach to improving image quality in pulsed X-ray tomography. The method is based on establishing a functional dependence of the reconstructed images on the duration of the probing pulses and applying an extrapolation procedure. The numerical experiments demonstrated that the developed algorithm effectively suppresses the influence of scattered radiation and significantly increases image contrast. The proposed alternative approach allows substantially increasing the stability of the method even for media containing strong scattering inhomogeneities and with a significant level of noise in the projection data. In addition, the algorithm has greater stability to errors in the source data caused by an increase in the duration of the probing pulses. The numerical experiments confirmed the high efficiency of the extrapolation tomography algorithm for recovering the internal structure of the test object.
Keywords: impulse tomography, nonstationary radiation transfer equation, inverse problem
Mots-clés : attenuation coefficient.
@article{SJIM_2024_27_3_a12,
     author = {I. P. Yarovenko and P. A. Vornovskikh and I. V. Prokhorov},
     title = {Extrapolation of tomographic images based on data of multiple pulsed probing},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {177--195},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a12/}
}
TY  - JOUR
AU  - I. P. Yarovenko
AU  - P. A. Vornovskikh
AU  - I. V. Prokhorov
TI  - Extrapolation of tomographic images based on data of multiple pulsed probing
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 177
EP  - 195
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a12/
LA  - ru
ID  - SJIM_2024_27_3_a12
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%A P. A. Vornovskikh
%A I. V. Prokhorov
%T Extrapolation of tomographic images based on data of multiple pulsed probing
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 177-195
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a12/
%G ru
%F SJIM_2024_27_3_a12
I. P. Yarovenko; P. A. Vornovskikh; I. V. Prokhorov. Extrapolation of tomographic images based on data of multiple pulsed probing. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 177-195. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a12/

[1] Withers P. J., Bouman C., Carmignato S., Cnudde V., Grimaldi D., Hagen C. K., Maire E., Manley M., Du Plessis A., Stock S. R., “X-ray computed tomography”, Nat. Rev. Methods Primers, 1:1 (2021), 18 | DOI | Zbl

[2] Abhisheka B., Biswas S. K., Purkayastha B., Das D., Escargueil A., “Recent trend in medical imaging modalities and their applications in disease diagnosis: a review”, Multimed. Tools. Appl., 83 (2023), 1–36 | DOI

[3] Altaf F., Islam S. M., Akhtar N., Janjua N. K., “Going deep in medical image analysis: concepts, methods, challenges, and future directions”, IEEE Access, 2019, no. 7, 99540–99572 | DOI

[4] Kalender W. A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis, Erlangen, 2011

[5] Mazurov A. I., Potrakhov N. N., “Effect of Scattered X-Ray Radiation on Imaging Quality and Techniques for Its Suppression”, Biomed. Eng., 48 (2015), 241–245 | DOI

[6] D. S. Anikonov, “Uniqueness of determining the coefficient of the transfer equation for a special type of source”, Dokl. Akad. Nauk SSSR, 284:5 (1985), 1033–1037 (in Russian) | MR | Zbl

[7] Anikonov D. S., Prokhorov I. V., Kovtanyuk A. E., “Investigation of scattering and absorbing media by the methods of X-ray tomography”, J. Inverse Ill-Posed Probl., 1:4 (1993), 259–282 | DOI | MR

[8] Antyufeev V. S., Bondarenko A. N., “X-ray tomography in scattering media”, SIAM J. Appl. Math., 56:2 (1996), 573–587 | DOI | MR | Zbl

[9] Kovtanyuk A. E., Prokhorov I. V., “Tomography problem for the polarized-radiation transfer equation”, J. Inverse Ill-Posed Probl., 14:6 (2006), 609–620 | DOI | MR | Zbl

[10] Prokhorov I. V., Yarovenko I. P., Nazarov V. G., “Optical tomography problems at layered media”, Inverse Probl., 24:2 (2008), 025019 | DOI | MR | Zbl

[11] Zhao C., Chen X., Ouyang L., Wang J., Jin M., “Robust moving-blocker scatter correction for cone-beam computed tomography using multiple-view information”, PLOS ONE, 12:12 (2017), 0189620

[12] Altunbas C., Park Y., Yu Z., Gopal A., “A unified scatter rejection and correction method for cone beam computed tomography”, Med. Phys., 48:3 (2021), 1211–1225 | DOI

[13] Blinov A. B., Blinov N. N., “X-Ray Image Improvement by Filtering of Scattered Radiation”, Biomed. Eng., 47 (2014), 235–238 | DOI

[14] I. P. Yarovenko, “X-Ray image improvement by filtering of scattered radiation”, Vychisl. Tekhnol., 17 (2012), 99–109 (in Russian) | Zbl

[15] Fetisov G.V., “X-ray diffraction methods for structural diagnostics of materials: progress and achievements”, Phys.–Usp., 63:1 (2020), 2–32 | DOI

[16] Prokhorov I. V., Yarovenko I. P., “Determination of the attenuation coefficient for the nonstationary radiative transfer equation”, Comput. Math. Math. Phys., 61:12 (2021), 2088–2101 | DOI | MR | Zbl

[17] Maier J., Sawall S., Knaup M., Kachelrie M., “Deep Scatter Estimation (DSE): Accurate Real-Time Scatter Estimation for X-Ray CT Using a Deep Convolutional Neural Network”, J. Nondestr. Eval., 37:57 (2018), 9

[18] I. V. Prokhorov and I. P. Yarovenko, “Improving the quality of tomographic images of a medium using irradiation with pulses of different duration”, Dokl. Math., 106:1 (2022), 272–278 | DOI | MR | Zbl

[19] Yarovenko I. P., Prokhorov I. V., “An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations”, J. Inverse Ill-posed Probl., 32:1 (2024), 57–74 | MR | Zbl

[20] Natterer F., The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | MR | Zbl

[21] Herman G., Natterer F., Mathematical Aspects of Computerized Tomography, Springer Science Business Media, Oberwolfach, 2013 | MR

[22] Yarovenko I. P., Kazantsev I. G, “An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography”, Far Eastern Math. J., 22:2 (2022), 269–275 | Zbl

[23] Choi J., Dong B., Zhang X., “Limited tomography reconstruction via tight frame and simultaneous sinogram extrapolation”, J. Comput. Math., 34 (2016), 575–589 | DOI | MR | Zbl

[24] Gao H., Zhang L., Chen Z., Xing Y., Cheng J., “An Extrapolation Method for Image Reconstruction from a Straight-line Trajectory”, IEEE Nucl. Sci. Symp. Conf. Rec., 2006, no. 4, 2304–2308 | MR

[25] Clark D. P., Schwartz F. R., Marin D., Ramirez-Giraldo J. C., Badea C. T., “Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography”, Med. Phys., 47:9 (2020), 4150–4163 | DOI

[26] Lozovoy V., Rasskazov G., Ryabtsev A., Dantus M., “Phase-only synthesis of ultrafast stretched square pulses”, Opt. Express, 23 (2015), 27105 | DOI

[27] Yu. I. Ershov and S. B. Shikhov, Mathematical Foundations of Transfer Theory, Atomizdat, M., 1985 (in Russian)

[28] V. S. Vladimirov, “Mathematical problems of single-velocity theory of particle transport”, Tr. MIAN SSSR, 61, 1961, 3–158 (in Russian)

[29] T. A. Germogenova, Local Properties of Solutions to the Transport Equation, Nauka, M., 1986 (in Russian) | MR

[30] C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh— London, 1975 | MR | Zbl

[31] V. M. Novikov and S. B. Shikhov, Theory of Parametric Influence on Neutron Transport, Energoizdat, M., 1982 (in Russian) | MR

[32] Agoshkov V. I., Boundary value problems for transport equations. Modeling and Simulation in Science, Engineering and Technology, Birkhauser, Basel, 1998 | MR

[33] Nazarov V. G., Prokhorov I. V., Yarovenko I. P., “Identification of an Unknown Substance by the Methods of Multi-Energy Pulse X-ray Tomography”, Mathematics, 11:15 (2023), 3263 | DOI

[34] Mah P., Reeves T. E., McDavid W. D., “Deriving Hounsfield units using grey levels in cone beam computed tomography”, Dentomaxillofac. Radiol., 39 (2010), 323–335 | DOI

[35] G. A. Mikhailov and I. N. Medvedev, Optimization of Weight Algorithms of Statistical Modeling, Omega Print, Novosibirsk, 2011 (in Russian)

[36] Osipov S., Chakhlov S,, Zhvyrblia V., Sednev D., Osipov O., Usachev E., “The Nature of Metal Artifacts in X-ray Computed Tomography and Their Reduction by Optimization of Tomography Systems Parameters”, Appl. Sci., 13 (2023), 2666 | DOI

[37] Zhang Y., Yu H., “Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography”, IEEE Trans. Med. Imaging, 37 (2017), 1370–1381 | DOI

[38] Wang Z., Bovik A., Sheikh H., Simoncelli E., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Trans. Image Process., 13 (2004), 600–612 | DOI