Keywords: initial–boundary value problem, solvability, uniqueness.
@article{SJIM_2024_27_3_a10,
author = {A. S. Fomenko},
title = {Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in {H\"older} spaces},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {157--164},
year = {2024},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/}
}
TY - JOUR AU - A. S. Fomenko TI - Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 157 EP - 164 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/ LA - ru ID - SJIM_2024_27_3_a10 ER -
%0 Journal Article %A A. S. Fomenko %T Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 157-164 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/ %G ru %F SJIM_2024_27_3_a10
A. S. Fomenko. Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 157-164. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/
[1] Starovoitov V. N., Starovoitova B. N., “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys. Conf. Ser., 894:1 (2017), 012088 | DOI
[2] V. N. Starovoitov, “Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule”, Sib. Elektron. Mat. Izv., 20:2 (2023), 1597–1604 (in Russian) | DOI | MR | Zbl
[3] Walker C., “Some results based on maximal regularity regarding population models with age and spatial structure”, J. Elliptic Parabol. Equ., 4:1 (2018), 69–105 | DOI | MR | Zbl
[4] Webb G. F., Population Models Structured by Age, Size, and Spatial Position, Springer, Berlin, 2008 | MR
[5] V. N. Starovoitov, “Initial–boundary value problem for a nonlocal in time parabolic equation”, Sib. Elektron. Mat. Izv., 15 (2018), 1311–1319 | DOI | MR | Zbl
[6] Starovoitov V. N., “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | MR | Zbl
[7] Starovoitov V. N., “Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral”, J. Elliptic Parabol. Equ., 7:2 (2021), 623–634 | DOI | MR | Zbl
[8] Walker C., “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79 (2021), 265–272 | DOI | MR | Zbl
[9] Djida J.-D., Foghem Gounoue G. F., Tchaptchie Y. K., “Nonlocal complement value problem for a global in time parabolic equation”, J. Elliptic Parabol. Equ., 8:2 (2022), 767–789 | DOI | MR | Zbl
[10] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl
[11] L. C. Evans, Partial Differential Equations, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl