Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 157-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an initial–boundary value problem for a semilinear parabolic differential equation with a time-nonlocal term. This term contains the integral of the solution over the entire time interval on which the problem is considered. The solvability of the problem in Hölder classes is proved. The uniqueness of the solution is established under a constraint on the length of the time interval over which the solution is integrated in the nonlocal term.
Mots-clés : time-nonlocal parabolic equation
Keywords: initial–boundary value problem, solvability, uniqueness.
@article{SJIM_2024_27_3_a10,
     author = {A. S. Fomenko},
     title = {Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in {H\"older} spaces},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {157--164},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/}
}
TY  - JOUR
AU  - A. S. Fomenko
TI  - Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 157
EP  - 164
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/
LA  - ru
ID  - SJIM_2024_27_3_a10
ER  - 
%0 Journal Article
%A A. S. Fomenko
%T Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 157-164
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/
%G ru
%F SJIM_2024_27_3_a10
A. S. Fomenko. Solvability of an initial-boundary value problem for a parabolic equation with a time-nonlocal term in Hölder spaces. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 157-164. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a10/

[1] Starovoitov V. N., Starovoitova B. N., “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys. Conf. Ser., 894:1 (2017), 012088 | DOI

[2] V. N. Starovoitov, “Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule”, Sib. Elektron. Mat. Izv., 20:2 (2023), 1597–1604 (in Russian) | DOI | MR | Zbl

[3] Walker C., “Some results based on maximal regularity regarding population models with age and spatial structure”, J. Elliptic Parabol. Equ., 4:1 (2018), 69–105 | DOI | MR | Zbl

[4] Webb G. F., Population Models Structured by Age, Size, and Spatial Position, Springer, Berlin, 2008 | MR

[5] V. N. Starovoitov, “Initial–boundary value problem for a nonlocal in time parabolic equation”, Sib. Elektron. Mat. Izv., 15 (2018), 1311–1319 | DOI | MR | Zbl

[6] Starovoitov V. N., “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | MR | Zbl

[7] Starovoitov V. N., “Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral”, J. Elliptic Parabol. Equ., 7:2 (2021), 623–634 | DOI | MR | Zbl

[8] Walker C., “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79 (2021), 265–272 | DOI | MR | Zbl

[9] Djida J.-D., Foghem Gounoue G. F., Tchaptchie Y. K., “Nonlocal complement value problem for a global in time parabolic equation”, J. Elliptic Parabol. Equ., 8:2 (2022), 767–789 | DOI | MR | Zbl

[10] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl

[11] L. C. Evans, Partial Differential Equations, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl