Application of evolutionary computations for solving optimal control problems with terminal constraints
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 12-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the development of a numerical algorithm for finding an approximate solution of an optimal control problem with terminal constraints and control constraints. The algorithm is based on the reduction of the original optimal control problem to a finite-dimensional problem and the use of the penalty method and the differential evolution method to solve the latter. A feature of the proposed approach is that the solution found is independent of the choice of the initial approximation. The operation of the algorithm is illustrated by its application to applied optimal control problems. The results of computational experiments are consistent with the results of calculations based on other methods.
Keywords: optimal control, differential evolution, penalty method, evolutionary calculation.
Mots-clés : terminal constraint
@article{SJIM_2024_27_3_a1,
     author = {E. V. Antipina and S. A. Mustafina and A. F. Antipin},
     title = {Application of evolutionary computations for solving optimal control problems with terminal constraints},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {12--25},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/}
}
TY  - JOUR
AU  - E. V. Antipina
AU  - S. A. Mustafina
AU  - A. F. Antipin
TI  - Application of evolutionary computations for solving optimal control problems with terminal constraints
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 12
EP  - 25
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/
LA  - ru
ID  - SJIM_2024_27_3_a1
ER  - 
%0 Journal Article
%A E. V. Antipina
%A S. A. Mustafina
%A A. F. Antipin
%T Application of evolutionary computations for solving optimal control problems with terminal constraints
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 12-25
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/
%G ru
%F SJIM_2024_27_3_a1
E. V. Antipina; S. A. Mustafina; A. F. Antipin. Application of evolutionary computations for solving optimal control problems with terminal constraints. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 12-25. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/

[1] Benita F., Mehlitz P., “Optimal control problems with terminal complementarity constraints”, SIAM J. Optim., 43 (2018), 3079–3104 | DOI | MR

[2] Longla M., “Pontryagin's principle of maximum for linear optimal control problems with phase constraints in infinite dimensional spaces”, Discrete Contin. Models Appl. Comput. Sci., 2008, no. 4, 5–19 | MR

[3] Bergounioux M., Bourdin L., “Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints”, ESAIM Contr. Optim. Calc. Var., 26 (2020), 35 | DOI | MR | Zbl

[4] Gugat M., Zuazua E., “Exact penalization of terminal constraints for optimal control problems”, Optim. Control Appl. Methods, 37:6 (2016), 1329–1354 | DOI | MR | Zbl

[5] Yurong D., “Application of penalty function method and the conjugate gradient method in economic scheduling of cascade hydropower stations”, IFAC Proc. Vol., 19:10 (1986), 227–232 | DOI

[6] Jiang C., Lin Q., Yu C., Teo K. L., Duan G. -R., “An exact penalty method for free terminal time optimal control problem with continuous inequality constraints”, J. Optim. Theory Appl., 154:1 (2012), 30–53 | DOI | MR | Zbl

[7] Xue B., Yao X., “A survey on evolutionary computation approaches to feature selection”, IEEE Trans. Evol. Comput., 2016, no. 20, 606–626 | DOI | MR

[8] Mohamed A. W., Mohamed A. K., “Adaptive guided differential evolution algorithm with novel mutation for numerical optimization”, Int. J. Mach. Learn. Cybern., 2019, no. 10, 253–277 | DOI | MR

[9] A. V. Panteleev and D. V. Metlitskaya, “An application of genetic algorithms with binary and real coding for approximate synthesis of suboptimal control in deterministic systems”, Autom. Remote Control, 72:11 (2011), 2328–2338 | DOI | MR | Zbl

[10] P. Yu. Gubin and V. P. Oboskalov, “Differential evolution method for generation maintenance scheduling”, Izv. Ross. Akad. Nauk. Energ, 2021, no. 2, 50–64 | DOI

[11] Fu Y., Ding M., Zhou C., Hu H., “Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization”, IEEE Trans. Syst. Man Cybern. Syst., 43:6 (2013), 1451–1465 | DOI

[12] A. V. Eremeev and N.N. Tyunin, “Differential evolution for directivity optimization of short-wave phased antenna arrays”, Mat. Strukt. Model, 2022, no. 3, 57–68 (in Russian) | DOI | MR

[13] A. A. Kovalevich, A. I. Yakimov, and D. M. Albkeirat, “Research of optimization stochastic algorithms for application in simulations of systems”, Inf. Tekhnol., 2011, no. 8, 55–60 (in Russian)

[14] Storn R., Price K., “Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces”, J. Glob. Optim., 1997, no. 11, 341–359 | DOI | MR | Zbl

[15] A. P. Karpenko, “Evolution operators of population algorithms for global optimization”, Mat. Mat. Model, 2018, no. 1, 59–89 (in Russian) | DOI

[16] Mohamed A. W., “A novel differential evolution algorithm for solving constrained engineering optimization problems”, J. Intell. Manuf., 2018, no. 29, 659–692 | DOI | MR

[17] A. V. Panteleev and T. A. Letova, Optimization Methods in Examples and Problems, Lan', M., 2015 (in Russian)

[18] A. Yu. Gornov, A. I. Tyatyushkin, and E. A. Finkelstein, “Numerical methods for solving applied optimal control problems”, Comput. Math. Math. Phys., 53:12 (2013), 1825–1838 | DOI | DOI | MR | Zbl

[19] R. P. Fedorenko, Approximate Methods for Solving Optimal Control Problems, Nauka, M., 1978 (in Russian)

[20] T. I. Madzhara and A. Yu. Gornov, “Test collection of optimal control problems with computational features”, Sovrem. Tekhnol. Sist. Anal. Model, 2009, no. 3, 49–56 (in Russian)