Mots-clés : terminal constraint
@article{SJIM_2024_27_3_a1,
author = {E. V. Antipina and S. A. Mustafina and A. F. Antipin},
title = {Application of evolutionary computations for solving optimal control problems with terminal constraints},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {12--25},
year = {2024},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/}
}
TY - JOUR AU - E. V. Antipina AU - S. A. Mustafina AU - A. F. Antipin TI - Application of evolutionary computations for solving optimal control problems with terminal constraints JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 12 EP - 25 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/ LA - ru ID - SJIM_2024_27_3_a1 ER -
%0 Journal Article %A E. V. Antipina %A S. A. Mustafina %A A. F. Antipin %T Application of evolutionary computations for solving optimal control problems with terminal constraints %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 12-25 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/ %G ru %F SJIM_2024_27_3_a1
E. V. Antipina; S. A. Mustafina; A. F. Antipin. Application of evolutionary computations for solving optimal control problems with terminal constraints. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 12-25. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a1/
[1] Benita F., Mehlitz P., “Optimal control problems with terminal complementarity constraints”, SIAM J. Optim., 43 (2018), 3079–3104 | DOI | MR
[2] Longla M., “Pontryagin's principle of maximum for linear optimal control problems with phase constraints in infinite dimensional spaces”, Discrete Contin. Models Appl. Comput. Sci., 2008, no. 4, 5–19 | MR
[3] Bergounioux M., Bourdin L., “Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints”, ESAIM Contr. Optim. Calc. Var., 26 (2020), 35 | DOI | MR | Zbl
[4] Gugat M., Zuazua E., “Exact penalization of terminal constraints for optimal control problems”, Optim. Control Appl. Methods, 37:6 (2016), 1329–1354 | DOI | MR | Zbl
[5] Yurong D., “Application of penalty function method and the conjugate gradient method in economic scheduling of cascade hydropower stations”, IFAC Proc. Vol., 19:10 (1986), 227–232 | DOI
[6] Jiang C., Lin Q., Yu C., Teo K. L., Duan G. -R., “An exact penalty method for free terminal time optimal control problem with continuous inequality constraints”, J. Optim. Theory Appl., 154:1 (2012), 30–53 | DOI | MR | Zbl
[7] Xue B., Yao X., “A survey on evolutionary computation approaches to feature selection”, IEEE Trans. Evol. Comput., 2016, no. 20, 606–626 | DOI | MR
[8] Mohamed A. W., Mohamed A. K., “Adaptive guided differential evolution algorithm with novel mutation for numerical optimization”, Int. J. Mach. Learn. Cybern., 2019, no. 10, 253–277 | DOI | MR
[9] A. V. Panteleev and D. V. Metlitskaya, “An application of genetic algorithms with binary and real coding for approximate synthesis of suboptimal control in deterministic systems”, Autom. Remote Control, 72:11 (2011), 2328–2338 | DOI | MR | Zbl
[10] P. Yu. Gubin and V. P. Oboskalov, “Differential evolution method for generation maintenance scheduling”, Izv. Ross. Akad. Nauk. Energ, 2021, no. 2, 50–64 | DOI
[11] Fu Y., Ding M., Zhou C., Hu H., “Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization”, IEEE Trans. Syst. Man Cybern. Syst., 43:6 (2013), 1451–1465 | DOI
[12] A. V. Eremeev and N.N. Tyunin, “Differential evolution for directivity optimization of short-wave phased antenna arrays”, Mat. Strukt. Model, 2022, no. 3, 57–68 (in Russian) | DOI | MR
[13] A. A. Kovalevich, A. I. Yakimov, and D. M. Albkeirat, “Research of optimization stochastic algorithms for application in simulations of systems”, Inf. Tekhnol., 2011, no. 8, 55–60 (in Russian)
[14] Storn R., Price K., “Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces”, J. Glob. Optim., 1997, no. 11, 341–359 | DOI | MR | Zbl
[15] A. P. Karpenko, “Evolution operators of population algorithms for global optimization”, Mat. Mat. Model, 2018, no. 1, 59–89 (in Russian) | DOI
[16] Mohamed A. W., “A novel differential evolution algorithm for solving constrained engineering optimization problems”, J. Intell. Manuf., 2018, no. 29, 659–692 | DOI | MR
[17] A. V. Panteleev and T. A. Letova, Optimization Methods in Examples and Problems, Lan', M., 2015 (in Russian)
[18] A. Yu. Gornov, A. I. Tyatyushkin, and E. A. Finkelstein, “Numerical methods for solving applied optimal control problems”, Comput. Math. Math. Phys., 53:12 (2013), 1825–1838 | DOI | DOI | MR | Zbl
[19] R. P. Fedorenko, Approximate Methods for Solving Optimal Control Problems, Nauka, M., 1978 (in Russian)
[20] T. I. Madzhara and A. Yu. Gornov, “Test collection of optimal control problems with computational features”, Sovrem. Tekhnol. Sist. Anal. Model, 2009, no. 3, 49–56 (in Russian)