Radon transform inversion formula in the class of discontinuous functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the concept of a pseudoconvex set in an odd-dimensional Euclidean space. The inversion formula is obtained for the Radon transform in the case where the integrand is a piecewise continuous function defined on a pseudoconvex set. The result achieved is a generalization of a previously known property proved for smooth functions.
Mots-clés : Radon transform, inversion formula.
Keywords: discontinuous functions, pseudoconvex set, probing, tomography
@article{SJIM_2024_27_3_a0,
     author = {D. S. Anikonov and D. S. Konovalova},
     title = {Radon transform inversion formula in the class of discontinuous functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--11},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a0/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - D. S. Konovalova
TI  - Radon transform inversion formula in the class of discontinuous functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 5
EP  - 11
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a0/
LA  - ru
ID  - SJIM_2024_27_3_a0
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A D. S. Konovalova
%T Radon transform inversion formula in the class of discontinuous functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 5-11
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a0/
%G ru
%F SJIM_2024_27_3_a0
D. S. Anikonov; D. S. Konovalova. Radon transform inversion formula in the class of discontinuous functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/SJIM_2024_27_3_a0/

[1] R. Courant, Partial Differential Equations, Interscience, Paris, 1962 | MR | Zbl

[2] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Springer, New York, 1981 | MR | Zbl

[3] Markoe A., Analytic tomography, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[4] Anikonov D. S., Prokhorov I. V., Kovtanyuk A. E., “Investigation of scattering and absorbing media by methods of X-ray tomography”, J. Inverse Ill-Posed Probl., 1:4 (1993), 259–281 | DOI | MR | Zbl

[5] F. Natterer, The Mathematics of Computerized Tomography, John Wiley, Stuttgart, 1986 | MR | MR | Zbl

[6] Derevtsov E. Yu., Volkov Yu. S., Schuster T., “Differential equations and uniqueness theorems for the generalized attenuated ray transforms of tensor fields”, Numerical computations: Theory and algorithms, 2020, 97–111 | DOI | MR | Zbl

[7] Svetov I. E., Polyakova A. P., “Inversion of generalized Radon transforms acting on 3D vector and symmetric tensor”, Inverse Probl., 40:1 (2024), 015009 | DOI | MR | Zbl

[8] I. E. Svetov, “Approximate inversion method for Radon transform operators of functions and normal Radon transform of vector and symmetric 2-tensor fields in $R^3$”, Sib. Elektron. Mat. Izv., 17 (2020), 1073–1087 | MR | Zbl

[9] N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev, and G. E. Taugynbaeva, “The Radon transform in the scheme of C(N)D-investigations and the quasi-Monte Carlo theory”, Russ. Math., 64 (2020), 87–92 | DOI | MR | Zbl

[10] Vinohradov M., Ponomarenko O., Moshensky A., Savchenko A., “Conformal Mapping of Discontinuous Functions for Inverse Radon Transform”, Systems, Decision and Control in Energy V, 481 (2023), 115–126 | DOI

[11] Olugboji T., Zhang Z., Carr S., Cetin C., “On the detection of upper mantle discontinuities with radon-transformed receiver functions (CRISP-RF)”, Geophys. J. Int., 236 (2024), 748–763 | DOI

[12] Katsevich A., “Analysis of Reconstruction from Discrete Radon Transform Data in $R^3$ When the Function Has Jump Discontinuities”, SIAM J. Math. Anal., 52:4 (2020), 3990–4021 | DOI | MR | Zbl

[13] A. V. Baev, “Radon transform for solving an inverse scattering problem in a planar layered acoustic medium”, Comput. Math. Math. Phys., 58:4 (2018), 537–547 | DOI | DOI | MR | Zbl

[14] Bellet J. B., “An Exact Radon Formula for Lambertian Tomography”, J. Math. Imaging Vis., 64 (2022), 939–947 | DOI | MR | Zbl

[15] Webber J., “Microlocal Analysis of Generalized Radon Transforms from Scattering Tomography”, SIAM J. Math. Anal., 14:3 (2021), 976–1003 | DOI | MR | Zbl

[16] Agranovsky M., Kuchment P., Kunyansky L., “On reconstruction formulas and algorithms for the thermoacoustic tomography”, Photoacoustic Imaging Spectrosc., 2017, 89–102 | DOI | MR

[17] Ambartsoumian G., Kuchment P., “A range description for the planar circular Radon transform”, SIAM J. Math. Anal., 38:2 (2006), 681–692 | DOI | MR

[18] D. S. Anikonov, E. Yu. Balakina, and D. S. Konovalova, “Inverse problem for the generalized Radon transform”, Nauchn.-Tekh. Vedomosti SPbGU. Ser. Fiz.-Mat. Nauki, 2022, 41–51

[19] Anikonov D. S., Kazantsev S. G., Konovalova D. S., “A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform”, J. Inverse Ill-Posed Probl., 31:6 (2023), 959–965 | DOI | MR | Zbl

[20] Kalnin T. G., Ivonin D. A., Abrosimov K. N., Grachev E. A., Sorokina N. V., “Analysis of tomographic images of the soil pore space structure by integral geometry methods”, Eurasian Soil Science, 54:9 (2021), 1400–1409 | DOI