@article{SJIM_2024_27_2_a8,
author = {A. A. Urtaeva},
title = {Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {121--132},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/}
}
TY - JOUR AU - A. A. Urtaeva TI - Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 121 EP - 132 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/ LA - ru ID - SJIM_2024_27_2_a8 ER -
A. A. Urtaeva. Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 121-132. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/
[1] A. V. Borovskikh, R. Mustafokulov, K. P. Lazarev, and Yu. V. Pokornyi, “On one class of fourth-order differential equations on a spatial network”, Dokl. Ross. Akad. Nauk, 345:6 (1995), 730–732
[2] R. Ch. Kulaev and A. A. Urtaeva, “On the multiplicity of eigenvalues of a fourth-order differential operator on a graph”, Differ. Equations, 58:7 (2022), 869–876 | DOI | DOI
[3] R. Ch. Kulaev, “The Green function of the boundary-value problem on a star-shaped graph”, Russ. Math., 57:2 (2013), 48–57 | DOI
[4] R. Ch. Kulaev, “Disconjugacy of fourth-order equations on graphs”, Sb. Math., 206:12 (2015), 1731–1770 | DOI | DOI
[5] Yu. V. Pokornyi and R. Mustafokulov, “On the positivity of the Green's function of linear boundary value problems for fourth-order equations on a graph”, Russ. Math., 43:2 (1999), 71–78
[6] Borovskikh A. V., Lazarev K. P., “Fourth-order differential equations on geometric graphs”, J. Math. Sci., 119:6 (2004), 719–738 | DOI
[7] Mercier D., Régnier V., “Control of a network of Euler—Bernoulli beams”, J. Math. Anal. Appl., 342:2 (2008), 874–894 | DOI
[8] Xu G. Q., Mastorakis N. E., Differential equations on metric graph, Wseas Press, Zografou, 2010
[9] Lubary J. A., “On the geometric and algebraic multiplicities for eigenvalue problems on graphs”, Lect. Notes Pure Appl. Math., 219, 2001, 135–146
[10] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, and S. A. Shabrov, Differential Equations on Geometric Graphs, Fizmatlit, M., 2007
[11] Kuchment P., “Quantum graphs. I. Some basic structures”, Waves Random Media, 14:1 (2004), S107–S128 | DOI
[12] Kuchment P., “Quantum graphs. II. Some spectral properties of quantum and combinatouial graphs”, J. Phys. A Math. Gen., 38:22 (2005), 4887–4900 | DOI
[13] A. T. Diab, B. K. Kaldybekova, and O. M. Penkin, “On the multiplicity of eigenvalues of the Sturm– Liouville problem on graphs”, Math. Notes, 99:4 (2016), 492–502 | DOI | DOI
[14] R. Ch. Kulaev, “Oscillation of the Green function of a multipoint boundary value problem for a fourthorder equation”, Differ. Equations, 51:4 (2015), 449–463 | DOI | DOI
[15] R. Ch. Kulaev, “On the disconjugacy property of an equation on a graph”, Sib. Math. J., 57:1 (2016), 64–73 | DOI
[16] R. Ch. Kulaev, “Criterion for the positiveness of the Green function of a many-point boundary value problem for a fourth-order equation”, Differ. Equations, 51:2 (2015), 163–176 | DOI
[17] R. Ch. Kulaev and A. A. Urtaeva, “Sturm separation theorems for a fourth-order equation on a graph”, Math. Notes, 111:6 (2022), 977–981 | DOI
[18] Kulaev R. Ch., “The qualitative theory of fourth-order differential equations on a graph”, Mediterr. J. Math., 19 (2022), 73 | DOI
[19] Kulaev R. Ch., Urtaeva A. A., “Spectral properties of a fourth-order differential operator on a network”, Math. Methods Appl. Sci., 46:14 (2023), 15743–15763 | DOI
[20] Timoshenko S. P., Young D. H., Weaver Jr. W., Vibration Problems in Engineering, 5th Edition, Wiley InterScience, Hoboken, 1990
[21] W. Leighton and Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI
[22] C. Castro and E. Zuazua, “Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass”, Math. Comput. Modelling, 32 (2000), 955–969 | DOI