Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 121-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies a model of a planar beam structure described by a fourth-order boundary value problem on a geometric graph. Elastic-hinge joint conditions are posed at the interior vertices of the graph. We study the properties of the spectral points of the corresponding spectral problem, prove upper bounds for the eigenvalue multiplicities, and show that the eigenvalue multiplicities depend on the graph structure (the number of boundary vertices, cycles, etc.). We give an example showing that our estimates are sharp.
Keywords: beam equation, quantum graph, eigenvalue, multiplicity.
@article{SJIM_2024_27_2_a8,
     author = {A. A. Urtaeva},
     title = {Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {121--132},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/}
}
TY  - JOUR
AU  - A. A. Urtaeva
TI  - Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 121
EP  - 132
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/
LA  - ru
ID  - SJIM_2024_27_2_a8
ER  - 
%0 Journal Article
%A A. A. Urtaeva
%T Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 121-132
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/
%G ru
%F SJIM_2024_27_2_a8
A. A. Urtaeva. Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 121-132. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a8/

[1] A. V. Borovskikh, R. Mustafokulov, K. P. Lazarev, and Yu. V. Pokornyi, “On one class of fourth-order differential equations on a spatial network”, Dokl. Ross. Akad. Nauk, 345:6 (1995), 730–732

[2] R. Ch. Kulaev and A. A. Urtaeva, “On the multiplicity of eigenvalues of a fourth-order differential operator on a graph”, Differ. Equations, 58:7 (2022), 869–876 | DOI | DOI

[3] R. Ch. Kulaev, “The Green function of the boundary-value problem on a star-shaped graph”, Russ. Math., 57:2 (2013), 48–57 | DOI

[4] R. Ch. Kulaev, “Disconjugacy of fourth-order equations on graphs”, Sb. Math., 206:12 (2015), 1731–1770 | DOI | DOI

[5] Yu. V. Pokornyi and R. Mustafokulov, “On the positivity of the Green's function of linear boundary value problems for fourth-order equations on a graph”, Russ. Math., 43:2 (1999), 71–78

[6] Borovskikh A. V., Lazarev K. P., “Fourth-order differential equations on geometric graphs”, J. Math. Sci., 119:6 (2004), 719–738 | DOI

[7] Mercier D., Régnier V., “Control of a network of Euler—Bernoulli beams”, J. Math. Anal. Appl., 342:2 (2008), 874–894 | DOI

[8] Xu G. Q., Mastorakis N. E., Differential equations on metric graph, Wseas Press, Zografou, 2010

[9] Lubary J. A., “On the geometric and algebraic multiplicities for eigenvalue problems on graphs”, Lect. Notes Pure Appl. Math., 219, 2001, 135–146

[10] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, and S. A. Shabrov, Differential Equations on Geometric Graphs, Fizmatlit, M., 2007

[11] Kuchment P., “Quantum graphs. I. Some basic structures”, Waves Random Media, 14:1 (2004), S107–S128 | DOI

[12] Kuchment P., “Quantum graphs. II. Some spectral properties of quantum and combinatouial graphs”, J. Phys. A Math. Gen., 38:22 (2005), 4887–4900 | DOI

[13] A. T. Diab, B. K. Kaldybekova, and O. M. Penkin, “On the multiplicity of eigenvalues of the Sturm– Liouville problem on graphs”, Math. Notes, 99:4 (2016), 492–502 | DOI | DOI

[14] R. Ch. Kulaev, “Oscillation of the Green function of a multipoint boundary value problem for a fourthorder equation”, Differ. Equations, 51:4 (2015), 449–463 | DOI | DOI

[15] R. Ch. Kulaev, “On the disconjugacy property of an equation on a graph”, Sib. Math. J., 57:1 (2016), 64–73 | DOI

[16] R. Ch. Kulaev, “Criterion for the positiveness of the Green function of a many-point boundary value problem for a fourth-order equation”, Differ. Equations, 51:2 (2015), 163–176 | DOI

[17] R. Ch. Kulaev and A. A. Urtaeva, “Sturm separation theorems for a fourth-order equation on a graph”, Math. Notes, 111:6 (2022), 977–981 | DOI

[18] Kulaev R. Ch., “The qualitative theory of fourth-order differential equations on a graph”, Mediterr. J. Math., 19 (2022), 73 | DOI

[19] Kulaev R. Ch., Urtaeva A. A., “Spectral properties of a fourth-order differential operator on a network”, Math. Methods Appl. Sci., 46:14 (2023), 15743–15763 | DOI

[20] Timoshenko S. P., Young D. H., Weaver Jr. W., Vibration Problems in Engineering, 5th Edition, Wiley InterScience, Hoboken, 1990

[21] W. Leighton and Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI

[22] C. Castro and E. Zuazua, “Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass”, Math. Comput. Modelling, 32 (2000), 955–969 | DOI