@article{SJIM_2024_27_2_a6,
author = {S. I. Senashov and I. L. Savostyanova},
title = {Conservation laws and solutions of the first boundary value problem for the equations of two- and three-dimensional elasticity},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {100--111},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a6/}
}
TY - JOUR AU - S. I. Senashov AU - I. L. Savostyanova TI - Conservation laws and solutions of the first boundary value problem for the equations of two- and three-dimensional elasticity JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 100 EP - 111 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a6/ LA - ru ID - SJIM_2024_27_2_a6 ER -
%0 Journal Article %A S. I. Senashov %A I. L. Savostyanova %T Conservation laws and solutions of the first boundary value problem for the equations of two- and three-dimensional elasticity %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 100-111 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a6/ %G ru %F SJIM_2024_27_2_a6
S. I. Senashov; I. L. Savostyanova. Conservation laws and solutions of the first boundary value problem for the equations of two- and three-dimensional elasticity. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 100-111. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a6/
[1] W. Nowacki, Teoria sprȩżystości, PWN, Warsaw, 1970
[2] B. D. Annin, V. O. Bytev, and S. I. Senashov, Group Properties of the Equations of Elasticity and Plasticity, Nauka, Novosibirsk, 1985
[3] Ostrosablin N. I., Senashov S. I., “Obschie resheniya i simmetrii uravnenii lineinoi teorii uprugosti”, Dokl. RAN, 322:3 (1992), 513–515
[4] N. I. Ostrosablin, “The general solution and reduction to diagonal form of a system of equations of linear isotropic elasticity”, J. Appl. Ind. Math., 4:3 (2010), 354–358 | DOI
[5] N. I. Ostrosablin, “Diagonalization of the system of static Lamé equations of isotropic linear elasticity”, J. Appl. Ind. Math., 7:1 (2013), 89–99 | DOI
[6] V. Yu. Prudnikov and Yu. A. Chirkunov, “Group foliation of Lamé equations”, Prikl. Mat. Mekh., 52:3 (1988), 471–477
[7] Belmetsov N. F., Chirkunov Yu. A., “Tochnye resheniya uravnenii dinamicheskoi asimmetrichnoi modeli teorii uprugosti”, Sib. zhurn. industr. matematiki, 15:4 (2012), 38–50
[8] N. F. Belmetsev and Yu. A. Chirkunov, “Exact solutions to the equations of a dynamic asymmetric pseudoelasticity model”, J. Appl. Ind. Math., 7:1 (2013), 41–53 | DOI
[9] Yu. N. Radaev, “Representation of displacements in a spatial harmonic problem of the theory of elasticity using two screw vectors”, Mech. Solids, 56:2 (2021), 263–270 | DOI | DOI
[10] S. I. Senashov and I. L. Savostyanova, “Using conservation laws to solve boundary value problems of the Moisil–Teodorescu system”, Sib. Zh. Ind. Mat., 25:2 (2022), 101–109
[11] A. G. Megrabov, “Conservation laws and other formulas for families of rays and wavefronts and for the eikonal equation”, Numer. Anal. Appl., 12:4 (2019), 395–406 | DOI