Mots-clés : adaptive gradient descent, regret
@article{SJIM_2024_27_2_a5,
author = {D. B. Rokhlin},
title = {On the dual gradient descent method for the resource allocation problem in multiagent systems},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {80--99},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a5/}
}
TY - JOUR AU - D. B. Rokhlin TI - On the dual gradient descent method for the resource allocation problem in multiagent systems JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 80 EP - 99 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a5/ LA - ru ID - SJIM_2024_27_2_a5 ER -
D. B. Rokhlin. On the dual gradient descent method for the resource allocation problem in multiagent systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 80-99. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a5/
[1] Bertsekas D. P., Nonlinear Programming, Athena Scientific, Belmont, 2016
[2] Rockafellar R. T., “Problem decomposition in block-separable convex optimization: Ideas old and new”, J. Nonlinear Convex Anal., 19:9 (2018), 1459–1474
[3] J.-P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson, Paris—New York—Barcelone, 1984
[4] Jalota D., Gopalakrishnan K., Azizan N., Johari R., Pavone M., “Online learning for traffic routing under unknown preferences”, Proc. 26th Int. Conf. Artif. Intell. Stat., PMLR, 206, 2023, 3210–3229, arXiv: 2203.17150
[5] Beck A., Nedić A., Ozdaglar A., Teboulle M., “An $O(1/k)$ gradient method for network resource allocation problems”, IEEE Trans. Control. Netw. Syst., 1:1 (2014), 64–73 | DOI
[6] E. A. Vorontsova, A. V. Gasnikov, A. S. Ivanova, and E. A. Nurminsky, “The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods by an example of the resource allocation problem”, Numer. Anal. Appl., 12:4 (2019), 338–358 | DOI
[7] Dengl R., “Smart grid and demand side management”, Handbook of real-time computing, 2022, 681–703 | DOI
[8] Mahdavi M., Jin R., Yang T., “Trading regret for efficiency: online convex optimization with long term constraints”, J. Mach. Learn. Res., 13:1 (2012), 2503–2528
[9] Zinkevich M., “Online convex programming and generalized infinitesimal gradient ascent”, Proc. Twentieth Int. Conf. Mach. Learn, AAAI Press, USA, 2003, 928–936
[10] Hazan E., Introduction to online convex optimization, MIT Press, Cambridge—Massachusetts, 2022
[11] Cesa-Bianchi N., Conconi A., Gentile C., “On the generalization ability of on-line learning algorithms”, IEEE Trans. Inf. Theory, 50:9 (2004), 2050–2057 | DOI
[12] Shalev-Shwartz S., “Online learning and online convex optimization”, Found. Trends Mach. Learn, 4:2 (2012), 107–194 | DOI
[13] Cutkosky A., “Anytime online-to-batch, optimism and acceleration”, Proc. 36th Int. Conf. Mach. Learn, PMLR, 97, 2019, 1446–1454
[14] Chen T., Ling Q., Giannakis G. B., “An online convex optimization approach to proactive network resource allocation”, IEEE Trans. Signal Process, 65:24 (2017), 6350–6364 | DOI
[15] Yu H., Neely M. J., “A low complexity algorithm with $O(\sqrt{T})$ regret and $O(1)$ constraint violations for online convex optimization with long term constraints”, J. Mach. Learn. Res., 21:1 (2020), 1–24
[16] Yi X., Li X., Yang T., Xie L., Johansson K., “Regret and cumulative constraint violation analysis for online convex optimization with long term constraints”, Proc. 38th Int. Conf. Mach. Learn, PMLR, 139, 2021, 11998–12008
[17] Jalota D., Sun H., Azizan N., Online learning for equilibrium pricing in markets under incomplete information, 2023 | DOI
[18] Roth A., Ullman J., Wu Z. S., “Watch and learn: optimizing from revealed preferences feedback”, Proc. forty-eighth Annual ACM Symp. Theory Comput., ACM, New York, 2016, 949–962 | DOI
[19] Ji Z., Mehta R., Telgarsky M., “Social welfare and profit maximization from revealed preferences”, Lect. Notes Comput. Sci., 11316, 2018, 264–281 | DOI
[20] Roth A., Slivkins A., Ullman J., Wu Z. S., “Multidimensional dynamic pricing for welfare maximization”, ACM Trans. Econ. Comput., 8:1 (2020), 1–35 | DOI
[21] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970
[22] Bertsekas D. P., Nedic A., Ozdaglar A. E., Convex analysis and optimization, Athena Scientific, Belmont, 2003
[23] Beck A., First-order methods in optimization, SIAM, Philadelphia, 2017 | DOI
[24] Orabona F., A Modern Introduction to Online Learning, 2019, arXiv: 1912.13213 | DOI
[25] Auer P., Cesa-Bianchi N., Gentile C., “Adaptive and self-confident on-line learning algorithms”, J. Comput. Syst. Sci., 64:1 (2002), 48–75 | DOI
[26] Aliprantis C. D., Border K. C., Infinite dimensional analysis: a hitchhiker's guide, Springer, Berlin, 2006 | DOI
[27] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer, Berlin, 2009
[28] Sh. Shalev-Shwartz and Sh. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge Univ. Press, Cambridge, 2014
[29] Nesterov Y., Shikhman V., “Dual subgradient method with averaging for optimal resource allocation”, Eur. J. Oper. Res., 270:3 (2018), 907–916 | DOI
[30] Shapiro A., Dentcheva D., Ruszczynski A., Lectures on stochastic programming: modeling and theory, SIAM, Philadelphia, 2009 | DOI
[31] Bertsekas D.P., “Stochastic optimization problems with nondifferentiable cost functionals”, J. Optim. Theory Appl., 12:2 (1973), 218–231 | DOI
[32] Shreve S. E., Stochastic salculus for finance II, continuous-time models, Springer, N. Y., 2004
[33] D. B. Rokhlin, “Resource allocation in communication networks with large number of users: The dual stochastic gradient method”, Theory Probab. Appl., 66:1 (2021), 105–120 | DOI
[34] Joulani P., Raj A., György A.,Szepesvári C., “A simpler approach to accelerated optimization: iterative averaging meets optimism”, Proc. 37th Int. Conf. Mach. Learn, PMLR, 119, 2020, 4984–4993
[35] Joulani P., György P., Szepesvári C., “A modular analysis of adaptive (non-)convex optimization: Optimism, composite objectives, variance reduction, and variational bounds”, Theor. Comput. Sci., 808:2 (2020), 108–138 | DOI
[36] E. A. Vorontsova, A. V. Gasnikov, P. E. Dvurechensky, A. S. Ivanova, and D. A. Pasechnyuk, “Numerical methods for the resource allocation problem in a computer network”, Comput. Math. Math. Phys., 61:2 (2021), 297–328 | DOI | DOI
[37] Yu. E. Nesterov, “A method for solving convex programming problems with complexity $O(1/k^2)$”, Dokl. Akad. Nauk SSSR, 269:3 (1982), 543–547
[38] Yu. E. Nesterov, Introduction to Convex Optimization, MTsNMO, M., 2010
[39] Nesterov Y., “Universal gradient methods for convex optimization problems”, Math. Program, 152:1–2 (2015), 381–404 | DOI