Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 66-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to study the solvability of inverse problems of determining, together with the solution of the heat equation, its right-hand side or an unknown external influence. The specific feature of the problems studied is that the unknown external influence is determined by two functions of which one depends only on the spatial variable and the other, only on the time variable.
Mots-clés : parabolic equation, existence
Keywords: inverse problem, unknown external influence, regular solution, uniqueness.
@article{SJIM_2024_27_2_a4,
     author = {A. I. Kozhanov and G. V. Namsaraeva},
     title = {Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {66--79},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - G. V. Namsaraeva
TI  - Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 66
EP  - 79
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a4/
LA  - ru
ID  - SJIM_2024_27_2_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A G. V. Namsaraeva
%T Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 66-79
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a4/
%G ru
%F SJIM_2024_27_2_a4
A. I. Kozhanov; G. V. Namsaraeva. Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 66-79. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a4/

[1] Mola G., “Reconstruction of two constant coefficients in linear anisotropic diffusion model”, Inverse Probl., 32:11 (2016), 115016 | DOI

[2] Lorenzi A., Mola G., “Identification of real constant in linear evolution equation in a Hilbert spaces”, Inverse Probl. Imaging, 5:3 (2011), 695–714 | DOI

[3] Lorenzi A., “Recovering two constants in a linear parabolic equation”, J. Phys. Conf. Ser., 73 (2007), 1–15 | DOI

[4] Mola G., “Identification of the Diffussion Coefficient in Linear Evolution Equations in Hilbert Spaces”, J. Abstr. Diff. Equat. Appl., 2 (2011), 18–28

[5] Lorenzi A., Mola G., “Recovering the reaction and the diffusion coefficients in a linear parabolic equation”, Inverse Probl., 28:7 (2012) | DOI

[6] A. I. Kozhanov and R. R. Safiullova, “Determination of parameters in telegraph equation”, Ufa Math. J., 9:1 (2017), 62–74 | DOI

[7] Kozhanov A. I., “Hyperbolic Equations with Unknown Coefficients”, Symmetry, 12:9 (2020), 1539 | DOI

[8] Lyubanova A. Sh., “Identification of a constant coefficient in an elliptic equation”, Appl. Anal., 87:10–11 (2008), 1121–1128 | DOI

[9] A. V. Velisevich, “On one inverse problem for an elliptic equation with mixed boundary conditions of the third kind”, Zh. SFU Ser. Mat. Fiz., 14:5 (2021), 659–666

[10] Lyubanova A.Sh., “Identifikatsiya koeffitsienta v starshem chlene psevdoparabolicheskogo uravneniya tipa filtratsii”, Sibirskii zhurnal industrialnoi matematiki, 54:6 (2013), 1315–1330

[11] E. G. Savateev, “On the problem of identification of a coefficient in a parabolic equation”, Sib. Math. J., 36:1 (1995), 160–167 | DOI

[12] Frolenkov, I. V., Kriger, E. N., “An Identification Problem of Coefficient in the Special Form at Function for Multi-Dimensional Parabolic Equation with Cauchy Data”, J. of Siberian Federal University. Mathematics Physics, 6:2 (2013), 186–199

[13] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Nauka, M., 1973

[14] O. A. Ladyzhenskaya, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967

[15] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Noth-Holland Publ., Amsterdam, 1978

[16] A. M. Nakhushev, Loaded Equations and Applications, Nauka, M., 2012

[17] M. T. Dzhenaliev, To the Theory of Linear Boundary Value Problems for Loaded Differential Equations, KTs ITPM, Almaty, 1995

[18] V. A. Trenogin, Functional Analysis, Nauka, M., 1980

[19] J. L. Lions, Quelques méthodes de résolution des probl`emes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969