The problem of verifying the market demand theory
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 43-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to acquaint applied mathematicians interested in the possibilities of applying methods for solving inverse problems in mathematical modeling in natural sciences and engineering to economic problems with our papers in this field. These papers refer to the problem of verifying the market demand theory, developed by the first author based on the revision of the unrealistic axiomatic neoclassical theory of individual demand within the framework of general scientific methodology. At the same time, the artificial object of individual theory—a rational and independent individual who maximizes his/her utility function—was replaced by a “statistical ensemble of consumers” of the market under study, and the postulates of individual theory became scientific hypotheses of the new theory. The verification of this theory consists in elucidating the question of rationalizing the statistical market demand by the collective utility function. This problem refers to the inverse problems of mathematical theories of real phenomena, which are usually ill posed and have many solutions. The solution of such problems consists in their regularization with involvement of additional information about the desired solution. Our method for verifying the market demand theory is a development of the nonparametric Afriat—Varian demand analysis with using “economic indices” of market demand as additional information, which allows obtaining solutions with various substantive properties.
Keywords: holistic theory of market demand, methodological issue, inverse problem, economic index.
@article{SJIM_2024_27_2_a3,
     author = {V. K. Gorbunov and A. G. Lvov},
     title = {The problem of verifying the market demand theory},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {43--65},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a3/}
}
TY  - JOUR
AU  - V. K. Gorbunov
AU  - A. G. Lvov
TI  - The problem of verifying the market demand theory
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 43
EP  - 65
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a3/
LA  - ru
ID  - SJIM_2024_27_2_a3
ER  - 
%0 Journal Article
%A V. K. Gorbunov
%A A. G. Lvov
%T The problem of verifying the market demand theory
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 43-65
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a3/
%G ru
%F SJIM_2024_27_2_a3
V. K. Gorbunov; A. G. Lvov. The problem of verifying the market demand theory. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 43-65. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a3/

[1] Mas-Colell A., Whinston M., Green J., Microeconomic Theory, Oxford University Press, New York, 1995

[2] V. P. Busygin, E. V. Zhelobod'ko, and A. A. Tsyplakov, Microeconomics. Third Level, Izd. Sib. Otd. Ros. Akad. Nauk, Novosibirsk, 2008

[3] Consumer Price Index Manual: Theory and Practice, Int. Labour Off., Geneva, 2004

[4] A. A. Konyus, “The problem of the true cost of living index”, Econ. Byull. Kon'yunkt. Inst., 1924, no. 9–10, 64–71 (in Russian)

[5] Samuelson P. A., Swamy S., “Invariant economic index numbers and canonical duality: survey and synthesis”, Am. Econ. Rev., 64:4 (1974), 566–593

[6] Diewert W. E., “The economic theory of index numbers: a survey”, Essays in Index Number Theory, v. I, eds. W.E. Diewert and A.O. Nakamura, 1993, 177–228

[7] Arrow K. J., Debreu G., “Existence of an equilibrium for a competitive economy”, Econometrica, 22:3 (1954), 265–290 | DOI

[8] Kirman A., “Demand theory and general equilibrium: from explanation to introspection, a journey down the wrong road”, Hist. Polit. Econ., 38, Suppl 1 (2006), 246–280 | DOI

[9] Kirman A., “Whom or what does the representative individual represent?”, J. Econ. Perspect., 6:2 (1992), 117–136 | DOI

[10] Kirman A., “The economic crisis is a crisis for economic theory”, CESifo Econ. Stud., 56:4 (2010), 498–535 | DOI

[11] Geoffrey M. Hodgson, Economics and Institutions: A Manifesto for a Modern Institutional Economics, Polity Press, Cambridge, 1988

[12] Arrow K. J., “Methodological individualism and social knowledge”, Am. Econ. Rev., 84:2 (1994), 1–9

[13] Allais M., “An outline of my main contributions to economic science”, Econ. Sci. (Nobel Lect.), 1988, 233–252

[14] M. Allais, “Economics as a Science”, Cahiers Vilfredo Pareto, 6:16/17 (1968), 5–24

[15] Boumans M., Davis J., Economic methodology: Understanding economics as a science, Red Globe Press, London, 2016

[16] Jevons W. S., The theory of political economy, Kelley and Millman, N. Y., 1957

[17] Walras L., Elements of pure economics, Allen and Unwin, London, 1954

[18] Hillinger C., “Science and Ideology in Economic, Political and Social Thought”, Economics, 2:1 (2008), 20080002 | DOI

[19] V. K. Gorbunov, Mathematical Model of Consumer Demand: Theory and Applied Potential, Ekonomika, M., 2004

[20] V. K. Gorbunov, Consumer Demand: Analytical Theory and Applications, Ul'yan. Gos. Univ., Ul'yanovsk, 2015

[21] V. K. Gorbunov and A. G. Lvov, “Inverse problem of the theory of market demand and analytical indices of demand”, Zh. Sredn. Mat. O-va, 21:1 (2019), 89–110 | DOI

[22] V. K. Gorbunov, L. A. Kozlova, and A. G. Lvov, “To the problem of constructing analytical indices of market demand: A variable approach”, Vopr. Stat., 27:3 (2020), 65–80 | DOI

[23] V. K. Gorbunov and A. G. Lvov, “Analysis of consumer demand in Russia: Two-stage construction of analytical indices”, Vopr. Stat., 29:4 (2022), 97–113 | DOI

[24] Afriat S. N., “The construction of utility functions from expenditure data”, Int. Econ. Rev., 8:1 (1967), 67–77 | DOI

[25] Varian H. R., “The nonparametric approach to demand analysis”, Econometrica, 50:4 (1982), 945–973 | DOI

[26] Varian H. R., “Non-parametric tests of consumer behaviour”, Rev. Econ. Stud., 50:1 (1983), 99–110 | DOI

[27] A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, M., 1986 (in Russian)

[28] V. K. Gorbunov, “The relaxation penalty method and degenerate extremum problems”, Dokl. Math., 63:2 (2001), 219–223

[29] Gorbunov V. K., “Regularization of degenerated equations and inequalities under explicit data parameterization”, J. Inverse Ill-Posed Probl., 9:6 (2001), 575–594 | DOI

[30] V. K. Gorbunov, “Regularization of nonlinear ill-posed problems with parameterized data”, Nonlinear Analysis and Nonlinear Differential Equations, 2003, 418–447 (in Russian)

[31] Gorman W. M., “Community preference fields”, Econometrica, 21:1 (1953), 63–80 | DOI

[32] Samuelson P. A., “Social indifference curves”, Q. J. Econ., 70:1 (1956), 1–22 | DOI

[33] Zadeh L. A., “Fuzzy sets”, Inf. Control, 8:3 (1965), 338–353 | DOI

[34] Stone R., “Linear expenditure systems and demand analysis: an application to the pattern of British demand”, Econ. J., 64:255 (1954), 511–527 | DOI

[35] Klein L. R., Rubin H., “A constant-utility index of the cost of living”, Rev. Econ. Stud., 15:2 (1947), 84–87 | DOI

[36] Geary R. C., “A note on «A constant-utility index of the cost of living»”, Rev. Econ. Stud., 18:1 (1950), 65–66 | DOI

[37] Deaton A. S., “The analysis of consumer demand in the United Kingdom, 1900-1970”, Econometrica, 42:2 (1974), 341–367 | DOI

[38] Deaton A., Muellbauer J., “An almost ideal demand system”, Am. Econ. Rev., 70:3 (1980), 312–326

[39] Deaton A., “Demand analysis”, Handb. Econometrics, 3:30 (1986), 1767–1839 | DOI

[40] A. A. Shananin, “Nonparametric methods of analysis of consumer demand structure”, Mat. Model., 5:9 (1993), 3–17

[41] Diewert W. E., “Afriat and revealed preference theory”, Rev. Econ. Stud., 10:3 (1973), 419–425 | DOI

[42] Fleissig A. R., Whitney G. A., “Testing for the significance of violations of Afriat's inequalities”, J. Bus. Econ. Stat., 23:3 (2005), 355–362 | DOI

[43] V. V. Fedorov, Numerical Maximin Methods, Nauka, M., 1979 (in Russian)

[44] V. K. Gorbunov, “Holistic theory of economic equilibrium: Modified Cassel—Wald model”, Dokl. Math., 98:2 (2018), 537–539 | DOI | DOI