On nonlocal oscillations in 3D models of circular gene networks
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 34-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct three-dimensional dynamical systems with piecewise block-linear discontinuous right-hand side that simulate the simplest molecular oscillators. The phase portrait of each of these systems contains a unique equilibrium point and a cycle lying in the complement of the basin of attraction of this point. There are no other equilibrium points in these phase portraits.
Keywords: circular gene network model, phase portrait of nonlinear dynamical system, equilibrium point, step function, periodic trajectory
Mots-clés : invariant domain, nonlocal oscillation.
@article{SJIM_2024_27_2_a2,
     author = {A. V. Glubokikh and V. P. Golubyatnikov},
     title = {On nonlocal oscillations in {3D} models of circular gene networks},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--42},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a2/}
}
TY  - JOUR
AU  - A. V. Glubokikh
AU  - V. P. Golubyatnikov
TI  - On nonlocal oscillations in 3D models of circular gene networks
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 34
EP  - 42
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a2/
LA  - ru
ID  - SJIM_2024_27_2_a2
ER  - 
%0 Journal Article
%A A. V. Glubokikh
%A V. P. Golubyatnikov
%T On nonlocal oscillations in 3D models of circular gene networks
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 34-42
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a2/
%G ru
%F SJIM_2024_27_2_a2
A. V. Glubokikh; V. P. Golubyatnikov. On nonlocal oscillations in 3D models of circular gene networks. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 34-42. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a2/

[1] Hastings S., Tyson J., Webster D., “Existence of periodic solutions for negative feedback cellular control system”, J. Differ. Equ., 25 (1977), 39–64 | DOI

[2] Banks H. T., Mahaffy J. M., “Stability of cyclic gene models for systems involving repression”, J. Theor. Biol., 74 (1978), 323–334 | DOI

[3] Glyzin S. D., Kolosov A. Yu., Rozov N. Kh., “Existence and stability of the relaxation cycle in a mathematical repressilator model”, Mathematical Notes, 101:1 (2017), 71–86 | DOI | DOI

[4] Golubyatnikov V. P., Kirillova N. E., “On cycles in models of functioning of circular gene networks”, J. Math. Sci., 246:6 (2020), 779–787 | DOI

[5] Golubyatnikov V. P., Minushkina L. S., “Combinatorics and geometry of circular gene networks models”, Vavilov J. Genet. Breed, 6:4 (2020), 188–192 | DOI

[6] Golubyatnikov V. P., Minushkina L. S., “On uniqueness and stability of a cycle in one gene network”, Siberian Electron. Math. Rep., 1:1 (2021), 464–473 | DOI

[7] Ivanov V.V., “Attracting limit cycle of an odd-dimensional circular gene network model”, Journal of Applied and Industrial Maths, 16:3 (2022), 409–415 | DOI

[8] Tchuraev R. N., Galimzyanov A. V., “Modeling of actual eukaryotic control gene subnetworks based on the method of generalized threshold models”, Mol. Biol., 35:6 (2001), 933–939 | DOI

[9] Tchuraev R. N., “General principles of organization and laws of functioning in governing gene networks”, Bioinformatics of Genome Regulation and Structure, 2006, 367–377, Springer Science Media, Inc., N.Y. | DOI

[10] Böttner R., Bellmann K., Tchuraev R. N., Ratner V. A., “Modelling of epigenetic networks composed of monogenetic units of gene expression, with reference to bacteriophage lambda development”, Molecular Genetic Information Systems, 1983, 81–132

[11] Ayupova N.B., Golubyatnikov V. P., Volokitin E.P., “On non-local oscillations in gene networks models”, Mathematical Nones of NEFU, 31:1 (2024), 7–20 (In Russian) | DOI

[12] Golubyatnikov V. P., Ivanov, V.V., Minushkina L. S., “On existence of a cycle in one asymmetric gene network model”, Sib. Zh. Chist. Prikl. Mat., 18:3 (2018), 26–32 (In Russian) | DOI

[13] Ayupova N. B., Golubyatnikov V. P., “On a cycle in a 5-dimensional circular gene network model”, Journal of Applied and Industrial Mathematics, 15:3 (2021), 376–383 | DOI | DOI

[14] Volokitin E. P., “On limit cycles in a simplest model of a hypothetical gene network”, Sibir. Zh. Ind. Math., 7:3 (2004), 57–65 (in Russian)

[15] Elowitz M. B., Leibler S., “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[16] Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T. M., “On the chaos in gene networks”, J. Bioinform. Comput. Biol., 11 (2013), 1340009 | DOI

[17] Golubyatnikov V. P., Akinshin A. A., Ayupova N. B., Minushkina L. S., “Stratifications and foliations in phase portraits of gene network models”, Vavilov J. Genet. Breed, 26:8 (2022), 758–764 | DOI

[18] Glass L., Pasternack J. S., “Stable oscillations in mathematical models of biological control systems”, J. Math. Biol., 6 (1978), 207–223 | DOI

[19] Kazantsev M. V., “On some properties of the domain graphs of dynamical systems”, Sibir. Zh. Ind. Math., 18:4 (2015), 42–49 (in Russian) | DOI

[20] Golubyatnikov V. P., Gradov V. S., “Non-uniqueness of cycles in piecewise-linear models of circular gene networks”, Siberian Adv. Math., 31:1 (2021), 1–12 | DOI

[21] Pliss V. A., Nonlocal problems in the theory of oscillations, Academic Press, NY, 1966

[22] Pétrovsky I., Théorie des équations différentielles ordinaires et des équations intégrales, Mir, M., 1988

[23] Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N. V., Leonov G.A., Prasad A., “Hidden attractors in dynamical systems”, Phys. Rep., 637 (2016), 1–50 | DOI

[24] Golubyatnikov V. P., “On non-uniqueness of cycles in 3D models of circular gene networks”, Chelyabinsk Physical and Mathematical Journal, 9:1 (2024), 23–34 (in Russian) | DOI

[25] Akinshin A. A., “Andronov-Hopf bifurcation for some nonlinear equations with delay”, Sibir. Zh. Ind. Math., 16:3 (2013), 3–15 (in Russian)