Filtration of two immiscible incompressible fluids
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a mathematical model of the filtration of two immiscible incompressible fluids in deformable porous media. This model is a generalization of the Musket—Leverett model, in which porosity is a function of the space coordinates. The model under study is based on the equations of conservation of mass of liquids and porous skeleton, Darcy's law for liquids, accounting for the motion of the porous skeleton, Laplace's formula for capillary pressure, and a Maxwell-type rheological equation for porosity and the equilibrium condition of the “system as a whole”. In the thin layer approximation, the original problem is reduced to the successive determination of the porosity of the solid skeleton and its speed, and then the elliptic-parabolic system for the “reduced” pressure and saturation of the fluid phase is derived. In view of the degeneracy of equations on the solution, the solution is understood in a weak sense. The proofs of the results are carried out in four stages: regularization of the problem, proof of the maximum principle, construction of Galerkin approximations, and passage to the limit in terms of the regularization parameters based on the compensated compactness principle.
Keywords: two-phase filtration, Darcy's law, poroelasticity, solvability.
Mots-clés : saturation
@article{SJIM_2024_27_2_a1,
     author = {P. V. Gilev and A. A. Papin},
     title = {Filtration of two immiscible incompressible fluids},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {20--33},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a1/}
}
TY  - JOUR
AU  - P. V. Gilev
AU  - A. A. Papin
TI  - Filtration of two immiscible incompressible fluids
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 20
EP  - 33
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a1/
LA  - ru
ID  - SJIM_2024_27_2_a1
ER  - 
%0 Journal Article
%A P. V. Gilev
%A A. A. Papin
%T Filtration of two immiscible incompressible fluids
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 20-33
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a1/
%G ru
%F SJIM_2024_27_2_a1
P. V. Gilev; A. A. Papin. Filtration of two immiscible incompressible fluids. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 20-33. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a1/

[1] A. A. Papin and Yu. Yu. Podladchikov, “Isothermal motion of two immiscible fluids in a poroelastic medium”, Izv. Altaisk. Gos. Univ., 2015, no. 1-2, 131–135 (in Russian) | DOI

[2] Connolly J. A. D., Podladchikov Y. Y., “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11:2 (1998), 55–84 | DOI

[3] Athy L. F., “Density, porosity, and compaction of sedimentary rocks”, Am. Assoc. Pet. Geol. Bull., 14:1 (1930), 1–24

[4] Lee J. J., Modelling and simulation of compacting sedimentary basins, Ph.D. Dissertation, University of Oxford, Oxford, 2019

[5] Terzaghi K., “Der Grundbruch an Stauwerken und seine Verhütung”, Die Wasserkraft, 1922, no. 17, 445–449

[6] Waldner P. A., Schneebeli M., Schultze-Zimmermann U., Fluhler H., “Effect of snow structure on water flow and solute transport”, Hydrol. Process, 18:7 (2008), 1271–1290 | DOI

[7] R. R. Khasanov and A. R. Smirnova, “Experimental studies of physical characteristics of precompressed clay soils during soaking”, Mezhdunar. Nauchn.–Issled. Zh., 2017, no. 12 (66), 178–182 | DOI

[8] Shelukhin V. V, “A poroelastic medium saturated by a two-phase capillary fluid”, Contin. Mech. Thermodyn., 26:5 (2014), 619–638 | DOI

[9] Jardani A., Revil A., “Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases”, Geophys. J. Int., 202:2 (2015), 850–870 | DOI

[10] A. A. Papin and A. N. Sibin, “Self-similar solution of the problem of piston displacement of liquids in a poroelastic medium”, Izv. Altaisk. Gos. Univ., 2016, no. 1, 152–156 (in Russian) | DOI

[11] P. V. Gilev and A. A. Papin, “Study of the problem of two-phase filtration in a poroelastic medium in the approximation of a two-dimensional Hele—Shaw cell”, Sb. tezisov Evraziisk. konf. prikl. mat (Coll. Abstr. Eurasian Conf. Appl. Math.), 2021, 31 (in Russian)

[12] S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems of Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk, 1983

[13] G. V. Alekseev and N. V. Khusnutdinova, “On the solvability of the first boundary value problem for the equation of one-dimensional filtration of a two-phase fluid”, Dokl. Akad. Nauk SSSR, 202:2 (1972), 310–312

[14] Simpson M., Spiegelman M., Weinstein M. I., “Degenerate Dispersive Equations Arising in the Study of Magma Dynamics”, Nonlinearity, 20:1 (2007), 21–49 | DOI

[15] Papin A. A., Tokareva M. A., “On local solvability of the system of the equations of one dimentional motion of magma”, J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 385–395 | DOI

[16] Virts R., Papin A., Tokareva M., “Non-isothermal filtration of a viscous compressible fluid in a viscoelastic porous medium”, J. Phys. Conf. Ser., 2020, 012041 | DOI

[17] M. A. Tokareva and A. A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, J. Appl. Ind. Math., 13:2 (2019), 350–362 | DOI

[18] Morency C., Tromp J., “Spectral-element simulations of wave propagation in porous media”, Geophys. J. Int., 175:1 (2008), 301–345 | DOI

[19] Chengwei Z., Chong P., Wei W., Chun W., “A multi-layer SPH method for generic water-soil dynamic coupling problems. Part I: Revisit, theory, and validation”, Comput. Methods Appl. Mech. Eng., 396:2/3/4 (2022), 115106 | DOI

[20] O. B. Bocharov, V. Ya. Rudyak, and A. V. Seryakov, “The simplest models of deformation of a poroelastic medium saturated with fluids”, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. (2), 2014, 54–68 (in Russian)

[21] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967

[22] B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations, Nauka, M., 1978