The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-dimensional flow of a system of a viscous heat-conducting fluid and a binary mixture with a common interface in a layer bounded by solid walls is studied. A radial time-varying temperature distribution is specified on the lower substrate; the upper wall is assumed to be thermally insulated. Assuming a small Marangoni number, the structure of a steady-state flow is described depending on the layer thickness ratio and taking into account the influence of mass forces. The solution of the nonstationary problem is determined in Laplace transforms by quadratures. It is shown that if the given temperature on the lower substrate stabilizes over time, then with increasing time the solution reaches the resulting steady-state mode only under certain conditions on the initial distribution of concentrations in the mixture.
Keywords: Oberbeck–Boussinesq equations, binary mixture, Marangoni number.
@article{SJIM_2024_27_2_a0,
     author = {V. K. Andreev and M. V. Efimova},
     title = {The structure of a two-layer flow in a channel with radial heating of the lower substrate for small {Marangoni} numbers},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--19},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - M. V. Efimova
TI  - The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 5
EP  - 19
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/
LA  - ru
ID  - SJIM_2024_27_2_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A M. V. Efimova
%T The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 5-19
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/
%G ru
%F SJIM_2024_27_2_a0
V. K. Andreev; M. V. Efimova. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/

[1] Hiemenz K., “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Poliytech. J., 326 (1911), 321–440

[2] Lin C. C., “Note on a class of exact solutions in magnetohydrodynamics”, Arch. Ration. Mech. Anal., 1 (1958), 391–395 | DOI

[3] Bekezhanova V. B., Andreev V. K., Shefer I. A., “Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity”, Interfacial Phenom. Heat Transf., 7:4 (2019), 345–364 | DOI

[4] Lemeshkova E. N., “Two-Dimensional Plane Steady-State Thermocapillary Flow”, Fluid Dyn., 54:1 (2019), 33–41 | DOI

[5] Efimova M. V., “Construction of an Exact Solution of Special Type for the 3D Problem of Thermosolutal Convection in Two Layered System”, J. Sib. Fed. Univ. Math. Phys., 16:1 (2023), 26–34

[6] V. K. Andreev, Convection of Two Liquid Media in a Three-Dimensional Layer for Small Marangoni Numbers, ICM SB RAS, Krasnoyarsk, 2022

[7] V. K. Andreev, Thermocapillary Instability, Nauka, Novosibirsk, 2000

[8] R. Kh. Zeytounian, “The Benard—Marangoni thermocapillary-instability problem”, Phys.–Usp., 41:3 (1998), 241–267 | DOI | DOI

[9] Nepomnyashchy A. A., Velarde M., Colinet P., Interfacial Phenomena and Convection, CRC Press, Boca Raton, 2001

[10] Pukhnachov V. V., “Model of a viscous layer deformation by thermocapillary forces”, J. Appl. Math., 13 (2002), 205–224 | DOI

[11] M. V. Efimova and N. Darabi, “Thermal-concentration convection in a system of viscous liquid and binary mixture in a plane channel with small Marangoni numbers”, J. Appl. Mech. Tech. Phys., 59:5 (2018), 847–856 | DOI | DOI

[12] S. N. Aristov, D. V. Knyazev, and A. D. Polyanin, “Exact solutions of the Navier—Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI

[13] V. V. Pukhnachev and T. P. Pukhnacheva, “Three-dimensional nonstationary thermocapillary flow of a viscous liquid”, Vestn. KazNU Ser. Mat. Mekh. Inf., 2002, no. 2(30), 96–104

[14] Magdenko E. P., “Axisymmetric thermocapillary motion in a cylinder at small Marangoni number”, J. Sib. Fed. Univ. Math. Phys., 8:3 (2015), 303–311 | DOI

[15] Sobachkina N. L., “Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022), 623–634 | DOI

[16] M.A. Lavrent'ev and B.V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, M., 1973

[17] Andreev V. K., Stepanova I. V., “Non-stationary unidirectional motion of binary mixture in long flat layer”, Int. J. Appl. Comput. Math., 6:6 (2020), 169 | DOI

[18] Hoog F. R., Knight J. H., Stokes A. N., “An improved method for numerical inversion of Laplace transforms”, SIAM J. Sci. Statist. Comput., 3:3 (1982), 357–366 | DOI