@article{SJIM_2024_27_2_a0,
author = {V. K. Andreev and M. V. Efimova},
title = {The structure of a two-layer flow in a channel with radial heating of the lower substrate for small {Marangoni} numbers},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {5--19},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/}
}
TY - JOUR AU - V. K. Andreev AU - M. V. Efimova TI - The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 5 EP - 19 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/ LA - ru ID - SJIM_2024_27_2_a0 ER -
%0 Journal Article %A V. K. Andreev %A M. V. Efimova %T The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 5-19 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/ %G ru %F SJIM_2024_27_2_a0
V. K. Andreev; M. V. Efimova. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/SJIM_2024_27_2_a0/
[1] Hiemenz K., “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Poliytech. J., 326 (1911), 321–440
[2] Lin C. C., “Note on a class of exact solutions in magnetohydrodynamics”, Arch. Ration. Mech. Anal., 1 (1958), 391–395 | DOI
[3] Bekezhanova V. B., Andreev V. K., Shefer I. A., “Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity”, Interfacial Phenom. Heat Transf., 7:4 (2019), 345–364 | DOI
[4] Lemeshkova E. N., “Two-Dimensional Plane Steady-State Thermocapillary Flow”, Fluid Dyn., 54:1 (2019), 33–41 | DOI
[5] Efimova M. V., “Construction of an Exact Solution of Special Type for the 3D Problem of Thermosolutal Convection in Two Layered System”, J. Sib. Fed. Univ. Math. Phys., 16:1 (2023), 26–34
[6] V. K. Andreev, Convection of Two Liquid Media in a Three-Dimensional Layer for Small Marangoni Numbers, ICM SB RAS, Krasnoyarsk, 2022
[7] V. K. Andreev, Thermocapillary Instability, Nauka, Novosibirsk, 2000
[8] R. Kh. Zeytounian, “The Benard—Marangoni thermocapillary-instability problem”, Phys.–Usp., 41:3 (1998), 241–267 | DOI | DOI
[9] Nepomnyashchy A. A., Velarde M., Colinet P., Interfacial Phenomena and Convection, CRC Press, Boca Raton, 2001
[10] Pukhnachov V. V., “Model of a viscous layer deformation by thermocapillary forces”, J. Appl. Math., 13 (2002), 205–224 | DOI
[11] M. V. Efimova and N. Darabi, “Thermal-concentration convection in a system of viscous liquid and binary mixture in a plane channel with small Marangoni numbers”, J. Appl. Mech. Tech. Phys., 59:5 (2018), 847–856 | DOI | DOI
[12] S. N. Aristov, D. V. Knyazev, and A. D. Polyanin, “Exact solutions of the Navier—Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI
[13] V. V. Pukhnachev and T. P. Pukhnacheva, “Three-dimensional nonstationary thermocapillary flow of a viscous liquid”, Vestn. KazNU Ser. Mat. Mekh. Inf., 2002, no. 2(30), 96–104
[14] Magdenko E. P., “Axisymmetric thermocapillary motion in a cylinder at small Marangoni number”, J. Sib. Fed. Univ. Math. Phys., 8:3 (2015), 303–311 | DOI
[15] Sobachkina N. L., “Unsteady flow of two binary mixtures in a cylindrical capillary with changes in the internal energy of the interface”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022), 623–634 | DOI
[16] M.A. Lavrent'ev and B.V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, M., 1973
[17] Andreev V. K., Stepanova I. V., “Non-stationary unidirectional motion of binary mixture in long flat layer”, Int. J. Appl. Comput. Math., 6:6 (2020), 169 | DOI
[18] Hoog F. R., Knight J. H., Stokes A. N., “An improved method for numerical inversion of Laplace transforms”, SIAM J. Sci. Statist. Comput., 3:3 (1982), 357–366 | DOI