Migration velocity analysis using a ray method asymptotics of the double square root equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 108-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Seismic images of subsurface structures are the most valuable outcome of seismic data processing. The image quality is strongly affected by the accuracy of background velocity model. In this paper, we develop a gradient-descent velocity update algorithm based on our original high-frequency asymptotics of the double square root equation, i. e., a special one-way approximation of the wave equation describing single-scattered wave field only. We propose a loss function consistent with widely adopted imaging condition and derive equations for its gradient computation. We test our method on noise-free synthetic datasets in 2D settings.
Keywords: seismic inverse problem, velocity analysis, double square root equation, ray method, perturbation theory.
@article{SJIM_2024_27_1_a7,
     author = {N. N. Shilov and A. A. Duchkov},
     title = {Migration velocity analysis using a ray method asymptotics of the double square root equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {108--127},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a7/}
}
TY  - JOUR
AU  - N. N. Shilov
AU  - A. A. Duchkov
TI  - Migration velocity analysis using a ray method asymptotics of the double square root equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 108
EP  - 127
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a7/
LA  - ru
ID  - SJIM_2024_27_1_a7
ER  - 
%0 Journal Article
%A N. N. Shilov
%A A. A. Duchkov
%T Migration velocity analysis using a ray method asymptotics of the double square root equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 108-127
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a7/
%G ru
%F SJIM_2024_27_1_a7
N. N. Shilov; A. A. Duchkov. Migration velocity analysis using a ray method asymptotics of the double square root equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 108-127. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a7/

[1] I. I. Gurvich and G. N. Boganik, Seismic Exploration, A Textbook for Universities, AIS, Tver, 2006 (in Russian)

[2] Bleistein N., Cohen J. K., Stockwell W. Jr., Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Springer, N. Y., 2001 | DOI | MR | Zbl

[3] Lo T., Inderwiesen P. L., Fundamentals of Seismic Tomography, SEG Books, Tulsa, 1994 | DOI

[4] Claerbout J. F., Imaging the earth's interior, Blackwell scientific publication, Oxford, 1985

[5] Sava P. C., Fomel S., “Angle-domain common-image gathers by wavefield continuation methods”, Geophysics, 68:3 (2003), 1065–1074 | DOI

[6] Zhang Y., Xu S., Bleistein N., Zhang G., “True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations”, Geophysics, 72:1 (2007), S49–S58 | DOI

[7] A. V. Belonosova and A. S. Alekseev, “On one formulation of the inverse kinematic seismic problem for a two-dimensional inhomogeneous medium”, Some Methods and Algorithms for Interpreting Geophysical Data, Nauka, M., 1967, 137–154 (in Russian)

[8] Duchkov A. A., de Hoop M. V., “Extended isochron rays in prestack depth migration”, Geophysics, 75:4 (2010), S139–S150 | DOI

[9] N. N. Shilov, Dynamic ray tracing system for the double square root equation, Master's Final Qualifying Thesis, MMF NGU, Novosibirsk, 2021 (in Russian)

[10] Harris C. R., Millman K. J., van der Walt S. J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N. J., Kern R., Picus M., Hoyer S., van Kerkwijk M. H., Brett M., Haldane A., del Rio J. F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke Ch., Oliphant T. E., “Array programming with NumPy”, Nature, 585:7825 (2020), 357–362 | DOI

[11] Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M, Wilson J., Millman K. J., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., Polat I., Feng Y., Moore E. W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris Ch. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P., “SciPy 1.0: fundamental algorithms for scientific computing in Python”, Nat. Methods, 17:3 (2020), 261–272 | DOI

[12] Hunter J. D., “Matplotlib: A 2D graphics environment”, Comput. Sci. Eng, 9:3 (2007), 90–95 | DOI

[13] G. I. Marchuk, Methods of Computational Mathematics, Nauka, M., 1980 (in Russian) | MR

[14] V. P. Il'in, Methods for Solving Ordinary Differential Equations, IPTs NGU, Novosibirsk, 2017 (in Russian)

[15] Nocedal J., Wright S. J., Numerical Optimization, Second Edition, Springer, N. Y., 2006 | MR | Zbl

[16] Červenỳ V., Seismic ray theory, Cambridge university press, Cambridge, 2001 | MR

[17] A. S. Alekseev, V. M. Babich, and B. Ya. Gelchinskii, “Ray method for calculating the intensity of wave fronts”, Questions of the Dynamic Theory of Seismic Wave Propagation, 1961, no. 5, 3–24 (in Russian)

[18] Gilles L., “Stereotomography”, Geophysics, 73:5 (2008), VE25-VE34 | DOI

[19] Mathematica, Version 13.2, Wolfram Research, Inc., Champaign, IL, 2022