Differential equations with a small parameter and multipeak oscillations
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 87-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study a nonlinear dynamical system of autonomous ordinary differential equations with a small parameter $\mu$ such that two variables $x$ and $y$ are fast and another one $z$ is slow. If we take the limit as $\mu \to 0$, then this becomes a “degenerate system” included in the one-parameter family of two-dimensional subsystems of fast motions with the parameter $z$ in some interval. It is assumed that in each subsystem there exists a structurally stable limit cycle $l_z$. In addition, in the complete dynamical system there is some structurally stable periodic orbit $L$ that tends to a limit cycle $l_{z_0}$ for some $z=z_0$ as $\mu$ tends to zero. We can define the first return map, or the Poincaré map, on a local cross section in the hyperplane $(y, z)$ orthogonal to $L$ at some point. We prove that the Poincaré map has an invariant manifold for the fixed point corresponding to the periodic orbit $L$ on a guaranteed interval over the variable $y$, and the interval length is separated from zero as $\mu$ tends to zero. The proved theorem allows one to formulate some sufficient conditions for the existence and/or absence of multipeak oscillations in the complete dynamical system. As an example of application of the obtained results, we consider some kinetic model of the catalytic reaction of hydrogen oxidation on nickel.
Keywords: ordinary differential equation, small parameter, limit cycle, invariant manifold, kinetic model, multipeak self-oscillations.
Mots-clés : Poincaré map
@article{SJIM_2024_27_1_a6,
     author = {G. A. Chumakov and N. A. Chumakova},
     title = {Differential equations with a small parameter and multipeak oscillations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {87--107},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a6/}
}
TY  - JOUR
AU  - G. A. Chumakov
AU  - N. A. Chumakova
TI  - Differential equations with a small parameter and multipeak oscillations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 87
EP  - 107
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a6/
LA  - ru
ID  - SJIM_2024_27_1_a6
ER  - 
%0 Journal Article
%A G. A. Chumakov
%A N. A. Chumakova
%T Differential equations with a small parameter and multipeak oscillations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 87-107
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a6/
%G ru
%F SJIM_2024_27_1_a6
G. A. Chumakov; N. A. Chumakova. Differential equations with a small parameter and multipeak oscillations. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 87-107. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a6/

[1] A. M. Zhabotinskii, Concentration Self-Oscillations, Nauka, M., 1974 (in Russian)

[2] D. Gurel, O. Gurel, Oscillations in Chemical Reactions, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983

[3] G. Ertl, “Oscillatory Catalytic Reactions at Single-Crystal Surfaces”, Adv. Catal., 37 (1990), 213–277 | DOI

[4] Schüth F., Henry B. E., Schmidt L. D., “Oscillatory Reactions in Heterogeneous Catalysis”, Adv. Catal., 39 (1993), 51–127 | DOI

[5] R. Imbihl, “Oscillatory Reactions on Single-Crystal Surfaces”, Prog. Surf. Sci., 44 (1993), 185–343 | DOI

[6] R. Imbihl, G. Ertl, “Oscillatory Kinetics in Heterogenious Catalysis”, Chem. Rev., 95:3 (1995), 697–733 | DOI

[7] M. M. Slinko, N. I. Jaeger, Oscillating Heterogenious Catalytic Systems, Elsevier, Amsterdam, 1994

[8] V. D. Belyaev, M. M. Slinko, M. G. Slinko, V. I. Timoshenko, “Self-oscillations in the heterogeneous catalytic reaction of hydrogen with oxygen”, Dokl. Akad. Nauk SSSR, 214:5 (1974), 1098–1100 (in Russian)

[9] M. G. Slinko, “Dynamics of chemical processes and reactors”, Khim. Prom-st., 1979, no. 11, 260–268 (in Russian)

[10] E. S. Kurkina, N. V. Peskov, M. M. Slinko, M. G. Slinko, “On the nature of chaotic fluctuations in the rate of the CO oxidation reaction on a Pd-zeolite catalyst”, Dokl. Ross. Akad. Nauk, 351:4 (1996), 497–501 (in Russian)

[11] E. A. Lashina, V. V. Kaichev, N. A. Chumakova, V. V. Ustyugov, G. A. Chumakov, V. I. Bukhtiyarov, “Mathematical Simulation of Self-Oscillations in Methane Oxidation on Nickel: An Isothermal Model”, Kinet. Catal, 53 (2012), 374–383 | DOI

[12] E. A. Lashina, V. V. Kaichev, A. A. Saraev, Z. S. Vinokurov, N. A. Chumakova, G. A. Chumakov, V. I. Bukhtiyarov, “Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel”, J. Phys. Chem. A, 121 (2017), 6874–6886 | DOI

[13] E. A. Lashina, V. V. Kaichev, A. A. Saraev, N. A. Chumakova, G. A. Chumakov, V. I. Bukhtiyarov, “Self-Sustained Oscillations in Oxidation of Propane over Nickel: Experimental Study and Mathematical Modelling”, Top. Catal., 63:1-2 (2020), 33–48 | DOI

[14] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Mayer, Qualitative Theory of Second-Order Dynamical Systems, Nauka, M., 1966 (in Russian) | MR

[15] P. Hartman, Ordinary Differential Equations, John Wiley Sons, New York-London-Sydney, 1964 | MR | Zbl

[16] T. Poston, I. Stuart, Catastrophe Theory and Its Applications, Pitman, London–San Francisco, 1978 | MR | Zbl

[17] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995 | MR | Zbl

[18] L. P. Shil'nikov, A. L. Shil'nikov, D. V. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, v. 1, World Scientific, Singapore, 1998 | MR | Zbl

[19] L. P. Shil'nikov, A. L. Shil'nikov, D. V. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, v. 2, World Scientific, Singapore, 2001

[20] A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere”, Adv. Nonlinear Stud., 17:1 (2017), 17–30 | DOI | MR | Zbl

[21] A. K. Zvonkin, M. A. Shubin, “Non-standard analysis and singular perturbations of ordinary differential equations”, Russ. Math. Surv., 39:2 (1984), 69–131 | DOI | MR | Zbl

[22] A. B. Vasil'eva, V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations, Vyssh. Shkola, M., 1990 (in Russian)

[23] H. G. Solari, M. A. Natiello, G. B. Mindlin, Nonlinear Dynamics: A Two-way Trip from Physics to Math, Institute of Physics, London-Bristol-Philadelphia, 1996 | MR | Zbl

[24] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, N.Y., 1998 | MR | Zbl

[25] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983 | MR | Zbl

[26] G. A. Chumakov, M. G. Slinko, V. D. Belyaev, “"Complex changes in the rate of heterogeneous catalytic reactions”, Dokl. Akad. Nauk SSSR, 253:3 (1980), 653–658 (in Russian) | MR

[27] G. A. Chumakov, M. G. Slinko, “"Kinetic turbulence (chaos) of the reaction rate of interaction of hydrogen with oxygen over metal catalysts”, Dokl. Akad. Nauk SSSR, 266:5 (1982), 1194–1198 (in Russian)

[28] G. A. Chumakov, N. A. Chumakova, “Relaxation Oscillations in a Kinetic Model of Catalytic Hydrogen Oxidation Involving a Chase on Canards”, Chem. Eng. J., 91 (2003), 151–158 | DOI

[29] G. A. Chumakov, “Mathematical aspects of modeling the self-oscillations of the heterogeneous catalytic reaction rate. I”, Sib. Math. J., 46:5 (2005), 948–956 | DOI | MR | Zbl

[30] G. A. Chumakov, “Dynamics of a system of nonlinear differential equations”, Sib. Math. J., 48:5 (2007), 949–960 | DOI | MR | Zbl

[31] G. A. Chumakov, N. A. Chumakova, E. A. Lashina, “Modeling the Complex Dynamics of Heterogeneous Catalytic Reactions with Fast, Intermediate, and Slow Variables”, Chem. Eng. J., 282 (2015), 11–19 | DOI

[32] G. A. Chumakov, N. A. Chumakova, “Localization of an unstable solution of a system of three nonlinear ordinary differential equations with a small parameter”, J. Appl. Ind. Math., 16:4 (2022), 606–620 | DOI | DOI | MR

[33] V. I. Bykov, S. B. Tsybenova, “Implementation of the parameter continuation method for a system of two equations”, Vychisl. Tekhnol., 7:5 (2002), 21–28 (in Russian) | MR | Zbl

[34] L. S. Pontryagin, L. V. Rodygin, “"Periodic solution of one system of ordinary differential equations with a small parameter multiplying the derivatives”, Dokl. Akad. Nauk SSSR, 132:3 (1960), 537–540 (in Russian) | Zbl