Mots-clés : coagulation, vortex, turbulence
@article{SJIM_2024_27_1_a5,
author = {V. N. Khmelev and A. V. Shalunov and R. N. Golykh},
title = {A method for calculating ultrasonic coagulation of {PM2.5} particles in vortex and turbulent acoustic flows},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {72--86},
year = {2024},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/}
}
TY - JOUR AU - V. N. Khmelev AU - A. V. Shalunov AU - R. N. Golykh TI - A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 72 EP - 86 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/ LA - ru ID - SJIM_2024_27_1_a5 ER -
%0 Journal Article %A V. N. Khmelev %A A. V. Shalunov %A R. N. Golykh %T A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 72-86 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/ %G ru %F SJIM_2024_27_1_a5
V. N. Khmelev; A. V. Shalunov; R. N. Golykh. A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 72-86. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/
[1] Ma Y., Zang E., Liu Y., Lu Y., Krumholz H., Bell M., Chen K., Wildfire smoke PM2.5 and mortality in the contiguous United States, medRxiv, 2023 | DOI
[2] Ihsan I., Oktivia R., Anjani R., Xahroh N., “Health risk assessment of PM2.5 and PM10 in KST BJ Habibie, South Tangerang, Indonesia”, IOP Conf. Ser. Materials Sci. Engrg, 1201 (2023), 012033 | DOI
[3] Park D., Kim T., Kang K., “Black Carbon and PM2.5 impact analysis in an urban school”, E3S Web Conf, 396 (2023), 01056 | DOI
[4] Torkmahalleh M. A., Turganova K., Zhigulina Z., Madiyarova T., Adotey E. K., Malekipirbazari M., Buonanno G., Stabile L., “Formation of cluster mode particles (1–3 nm) in preschools”, Sci. Total Environ, 818 (2022), 151756 | DOI
[5] Riera E., Gonzalez-Gomez I., Rodriguez G., Gallego-Juarez J., “Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications”, Power Ultrasonics, Second Edition, 2023, 861–886 | DOI
[6] Moldavsky L., Gutfinger C., Oron A., Fichman M., “Effect of sonic waves on gas filtration by granular beds”, J. Aerosol Sci, 57 (2013), 125–130 | DOI
[7] Sheng C., Shen X., “Simulation of Acoustic Agglomeration Processes of Poly-Disperse Solid Particles”, Aerosol Sci. Technol, 41 (2007), 1–13 | DOI
[8] Song L., Modelling of Acoustic Agglomeration of Fine Aerosol Particles, Ph.D Thesis, Pennsylvania State University, University Park, 1990
[9] Khmelev V. N., Golykh R. N., Shalunov A. V., Nesterov V. A., “Numerical model of ultrasonic coagulation of dispersed particles in Eckart flows”, Interfacial Phenom. Heat Transf, 11:2 (2022), 1–23 | DOI
[10] Shi Y., Bai W., Zhao Z., Ayantobo O., Wang G., “Theoretical analysis of acoustic and turbulent agglomeration of droplet aerosols”, Adv. Powder Technol, 34:10 (2023), 104145 | DOI
[11] Matsson J. E., An Introduction to Ansys Fluent, SDC Publications, Misson, 2023
[12] Huang G., Leung R., Yang Z., “Implementation of Direct Acoustic Simulation using ANSYS Fluent”, INTER-NOISE NOISE-CON Congr. Conf. Proc., 2021, 1243–1252 | DOI
[13] O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Nauka, M., 1975 (in Russian) | MR
[14] Giese J. H., “Stream Functions for Three-Dimensional Flows”, J. Math. Phys., 30:1–4 (1951), 31–35 | DOI | MR | Zbl
[15] Buffoni B., Wahlen E., “Steady three-dimensional rotational flows: An approach via two stream functions and Nash—Moser iteration”, Anal. PDE, 12:5 (2019), 1225–1258 | DOI | MR | Zbl