A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 72-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for calculating the kinetics of ultrasonic coagulation of PM2.5 during fine gas cleaning that provides an order of magnitude higher calculation performance. Increased productivity is achieved through the proposed and justified method of reducing the original three-dimensional problem to a two-dimensional one. The proposed reduction method is based on the fact that the time of complete rotation of vortex acoustic flows turns out to be much shorter than the characteristic coagulation time during fine gas cleaning. This makes it possible to present the fractional composition of aerosol particles as a function of two stream functions instead of three coordinates. Calculations carried out using the proposed method make it possible to identify the possibility of increasing the efficiency of coagulation in three-dimensional flows due to the following mechanisms: a local increase in concentration caused by the inertial transfer of particles to the periphery of three-dimensional vortices in the gas phase, increasing the frequency of particle collisions due to three-dimensional turbulent disturbances in ultrasonic fields with a high amplitude of oscillatory velocity (more than 10 m/s), and increasing productivity and ensuring the possibility of continuous implementation of the process in flow mode due to the transfer of particles between the streamlines of the main vortices initiated by ultrasonic vibrations as well as due to external flows perpendicular to the plane of the vortices in three-dimensional space. The developed set of programs for implementing calculations can be used in the design of gas cleaning equipment.
Keywords: ultrasonic, three-dimensional space, streamline.
Mots-clés : coagulation, vortex, turbulence
@article{SJIM_2024_27_1_a5,
     author = {V. N. Khmelev and A. V. Shalunov and R. N. Golykh},
     title = {A method for calculating ultrasonic coagulation of {PM2.5} particles in vortex and turbulent acoustic flows},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {72--86},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/}
}
TY  - JOUR
AU  - V. N. Khmelev
AU  - A. V. Shalunov
AU  - R. N. Golykh
TI  - A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 72
EP  - 86
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/
LA  - ru
ID  - SJIM_2024_27_1_a5
ER  - 
%0 Journal Article
%A V. N. Khmelev
%A A. V. Shalunov
%A R. N. Golykh
%T A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 72-86
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/
%G ru
%F SJIM_2024_27_1_a5
V. N. Khmelev; A. V. Shalunov; R. N. Golykh. A method for calculating ultrasonic coagulation of PM2.5 particles in vortex and turbulent acoustic flows. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 72-86. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a5/

[1] Ma Y., Zang E., Liu Y., Lu Y., Krumholz H., Bell M., Chen K., Wildfire smoke PM2.5 and mortality in the contiguous United States, medRxiv, 2023 | DOI

[2] Ihsan I., Oktivia R., Anjani R., Xahroh N., “Health risk assessment of PM2.5 and PM10 in KST BJ Habibie, South Tangerang, Indonesia”, IOP Conf. Ser. Materials Sci. Engrg, 1201 (2023), 012033 | DOI

[3] Park D., Kim T., Kang K., “Black Carbon and PM2.5 impact analysis in an urban school”, E3S Web Conf, 396 (2023), 01056 | DOI

[4] Torkmahalleh M. A., Turganova K., Zhigulina Z., Madiyarova T., Adotey E. K., Malekipirbazari M., Buonanno G., Stabile L., “Formation of cluster mode particles (1–3 nm) in preschools”, Sci. Total Environ, 818 (2022), 151756 | DOI

[5] Riera E., Gonzalez-Gomez I., Rodriguez G., Gallego-Juarez J., “Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications”, Power Ultrasonics, Second Edition, 2023, 861–886 | DOI

[6] Moldavsky L., Gutfinger C., Oron A., Fichman M., “Effect of sonic waves on gas filtration by granular beds”, J. Aerosol Sci, 57 (2013), 125–130 | DOI

[7] Sheng C., Shen X., “Simulation of Acoustic Agglomeration Processes of Poly-Disperse Solid Particles”, Aerosol Sci. Technol, 41 (2007), 1–13 | DOI

[8] Song L., Modelling of Acoustic Agglomeration of Fine Aerosol Particles, Ph.D Thesis, Pennsylvania State University, University Park, 1990

[9] Khmelev V. N., Golykh R. N., Shalunov A. V., Nesterov V. A., “Numerical model of ultrasonic coagulation of dispersed particles in Eckart flows”, Interfacial Phenom. Heat Transf, 11:2 (2022), 1–23 | DOI

[10] Shi Y., Bai W., Zhao Z., Ayantobo O., Wang G., “Theoretical analysis of acoustic and turbulent agglomeration of droplet aerosols”, Adv. Powder Technol, 34:10 (2023), 104145 | DOI

[11] Matsson J. E., An Introduction to Ansys Fluent, SDC Publications, Misson, 2023

[12] Huang G., Leung R., Yang Z., “Implementation of Direct Acoustic Simulation using ANSYS Fluent”, INTER-NOISE NOISE-CON Congr. Conf. Proc., 2021, 1243–1252 | DOI

[13] O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Nauka, M., 1975 (in Russian) | MR

[14] Giese J. H., “Stream Functions for Three-Dimensional Flows”, J. Math. Phys., 30:1–4 (1951), 31–35 | DOI | MR | Zbl

[15] Buffoni B., Wahlen E., “Steady three-dimensional rotational flows: An approach via two stream functions and Nash—Moser iteration”, Anal. PDE, 12:5 (2019), 1225–1258 | DOI | MR | Zbl