Mathematical model of current distribution in a tungsten plate during pulsed heating
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, for the first time, we present a new model of current distribution in a tungsten sample and of substance evaporation when the surface is heated by an electron beam. The model is based on solving electrodynamics equations in a cylindrical coordinate system using a model temperature distribution in the sample and a thin layer of evaporated tungsten. The model is analyzed in a simplified formulation at constant values of electrical resistance and thermoelectric power in gas and metal. The dependence of the amplitude and isolines of thermal currents on the distribution of temperature at the sample surface is shown. The model parameters are taken from experiments at the Beam of Electrons for materials Test Applications (BETA) facility, created at the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences.
Keywords: mathematical modeling, thermal current, tungsten, pulsed heating, upper relaxation method, BETA stand, divertor material.
@article{SJIM_2024_27_1_a3,
     author = {G. G. Lazareva and V. A. Popov and V. A. Okishev},
     title = {Mathematical model of current distribution in a tungsten plate during pulsed heating},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {43--54},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a3/}
}
TY  - JOUR
AU  - G. G. Lazareva
AU  - V. A. Popov
AU  - V. A. Okishev
TI  - Mathematical model of current distribution in a tungsten plate during pulsed heating
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 43
EP  - 54
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a3/
LA  - ru
ID  - SJIM_2024_27_1_a3
ER  - 
%0 Journal Article
%A G. G. Lazareva
%A V. A. Popov
%A V. A. Okishev
%T Mathematical model of current distribution in a tungsten plate during pulsed heating
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 43-54
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a3/
%G ru
%F SJIM_2024_27_1_a3
G. G. Lazareva; V. A. Popov; V. A. Okishev. Mathematical model of current distribution in a tungsten plate during pulsed heating. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a3/

[1] Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A., “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads”, AIP Conf. Proc, 1771 (2016), 060004 | DOI

[2] Arakcheev A. S., Apushkinskaya D. E., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Lazareva G. G., Maksimova A. G., Popov V. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam”, Fusion Eng. Des, 132 (2018), 13–17 | DOI

[3] Lazareva G. G., Popov V. A., Arakcheev A. S., Burdakov A. V., Shwab I. V., Vaskevich V. L., Maksimova A. G., Ivashin N. E., Oksogoeva I. P., “Mathematical simulation of the distribution of the electron beam current during pulsed heating of a metal target”, J. Appl. Ind. Math, 24:2 (2021), 97–108 | MR | Zbl

[4] Popov V. A., Arakcheev A. S., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Theoretical simulation of the closed currents near non-uniformly strongly heated surface of tungsten due to thermo-emf”, Phys. Plasmas, 29:3 (2022), 033503 | DOI

[5] S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Modeling of Shock Wave Processes in Elastoplastic Materials at Various (Atomic, Meso, and Thermodynamic) Structural Levels, IKI, Izhevsk, 2014 (in Russian)

[6] Li X., Guan Y., “Theoretical fundamentals of short pulse laser-metal interaction: A review”, Nanotechnol. Precis. Eng, 3:3 (2020), 105–125 | DOI

[7] Lazareva G. G., Arakcheev A. S., Vasilyev A. A., Maksimova A. G., “Numerical simulation of tungsten melting under fusion reactor-relevant high-power pulsed heating”, Smart Innov. Syst. Technol, 133 (2019), 41–51 | DOI

[8] J. D. Jackson, Classical Electrodynamics, John Wiley Sons, New York–London, 1962 | MR

[9] H. Buchholz, Elektrische und magnetische Potentialfelder, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 | MR | Zbl

[10] W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York–Toronto–London, 1950

[11] Walden J., “On the approximation of singular source terms in differential equations”, Numer. Methods Partial Differ. Equ, 15:4 (1999), 503–520 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] V. P. Zagonov, “Mathematical modeling of the electromagnetic impact of pulsed fields on complex technical systems”, Functioning and Development of Complex National Economic, Technical, Energy, Transport Systems, Communication Systems, 1998, 392–394 (in Russian)

[13] M. E. Zhukovsky, “Self-consistent quasi-three-dimensional model of radiative excitation of electromagnetic fields”, Mat. Model., 8:4 (1996), 3–20 (in Russian) | Zbl

[14] Sadovskii V. M., Sadovskaya O. V., “Mathematical modeling of inhomogeneous electric field impact on a liquid crystal layer”, ZAMM Z. Angew. Math. Mech, 103:1 (2022), e202200248 | DOI | MR

[15] O. V. Sadovskaya, and V. M. Sadovskii, “Analysis of the unstable state of a liquid crystal based on the Oseen-Frank model”, Vestn. BashGU, 27:3 (2022), 525–529 (in Russian) | MR

[16] Droniou J., “Finite volume schemes for diffusion equations: introduction to and review of modern methods”, Math. Models Methods Appl. Sci, 24:8 (2014), 1575–1619 | DOI | MR | Zbl

[17] Vassilevski Yu., Terekhov K., Nikitin K., Kapyrin I., Parallel Finite Volume Computation on General Meshes, 1st ed., Springer, Cham, 2020, xv+186 pp. | MR | Zbl

[18] Kulikov I., Chernykh I., Tutukov A., “A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations that Is Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems”, Astrophys. J. Suppl. Ser, 243:1 (2019), 4 | DOI

[19] Eisenstat S. C., Elman H. C., Schultz M. H., “Variational iterative methods for nonsymmetric systems of linear equations”, SIAM J. Numer. Anal, 20:2 (1983), 345–357 | DOI | MR | Zbl

[20] A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations, Nauka, M., 1978 (in Russian)

[21] R. G. Strongin, V. P. Gergel', V. A. Grishagin, and K. A. Barkalov, Parallel Calculations in Global Optimization Problems, Mosk. Gos. Univ., M., 2013 (in Russian)

[22] Lazareva G. G., Arakcheev A. S., Vasilyev A. A., Maksimova A. G., “Numerical simulation of tungsten melting under fusion reactor-relevant high-power pulsed heating”, Smart Innov. Syst. Technol, 133 (2019), 41–51 | DOI